Siga este link para ver outros tipos de publicações sobre o tema: Nanoscale chemical imaging.

Artigos de revistas sobre o tema "Nanoscale chemical imaging"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Nanoscale chemical imaging".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Anderson, IM, JH J. Scott e ZH Levine. "Three-Dimensional Nanoscale Chemical Imaging via EFTEM Spectral Imaging". Microscopy and Microanalysis 12, S02 (31 de julho de 2006): 1550–51. http://dx.doi.org/10.1017/s1431927606068784.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Häberle, T., D. Schmid-Lorch, F. Reinhard e J. Wrachtrup. "Nanoscale nuclear magnetic imaging with chemical contrast". Nature Nanotechnology 10, n.º 2 (5 de janeiro de 2015): 125–28. http://dx.doi.org/10.1038/nnano.2014.299.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Stadler, Johannes, Thomas Schmid e Renato Zenobi. "Nanoscale Chemical Imaging of Single-Layer Graphene". ACS Nano 5, n.º 10 (7 de outubro de 2011): 8442–48. http://dx.doi.org/10.1021/nn2035523.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Nowak, Derek, William Morrison, H. Kumar Wickramasinghe, Junghoon Jahng, Eric Potma, Lei Wan, Ricardo Ruiz et al. "Nanoscale chemical imaging by photoinduced force microscopy". Science Advances 2, n.º 3 (março de 2016): e1501571. http://dx.doi.org/10.1126/sciadv.1501571.

Texto completo da fonte
Resumo:
Correlating spatial chemical information with the morphology of closely packed nanostructures remains a challenge for the scientific community. For example, supramolecular self-assembly, which provides a powerful and low-cost way to create nanoscale patterns and engineered nanostructures, is not easily interrogated in real space via existing nondestructive techniques based on optics or electrons. A novel scanning probe technique called infrared photoinduced force microscopy (IR PiFM) directly measures the photoinduced polarizability of the sample in the near field by detecting the time-integrated force between the tip and the sample. By imaging at multiple IR wavelengths corresponding to absorption peaks of different chemical species, PiFM has demonstrated the ability to spatially map nm-scale patterns of the individual chemical components of two different types of self-assembled block copolymer films. With chemical-specific nanometer-scale imaging, PiFM provides a powerful new analytical method for deepening our understanding of nanomaterials.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Wilson, Andrew J., Dinumol Devasia e Prashant K. Jain. "Nanoscale optical imaging in chemistry". Chemical Society Reviews 49, n.º 16 (2020): 6087–112. http://dx.doi.org/10.1039/d0cs00338g.

Texto completo da fonte
Resumo:
New advances in label-free optical imaging methods are allowing a wide range of chemical processes in surface science, catalysis, and photochemistry to be probed on the nanoscale and single-molecule levels.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Retterer, Scott T., Jennifer L. Morrell-Falvey e Mitchel J. Doktycz. "Nano-Enabled Approaches to Chemical Imaging in Biosystems". Annual Review of Analytical Chemistry 11, n.º 1 (12 de junho de 2018): 351–73. http://dx.doi.org/10.1146/annurev-anchem-061417-125635.

Texto completo da fonte
Resumo:
Understanding and predicting how biosystems function require knowledge about the dynamic physicochemical environments with which they interact and alter by their presence. Yet, identifying specific components, tracking the dynamics of the system, and monitoring local environmental conditions without disrupting biosystem function present significant challenges for analytical measurements. Nanomaterials, by their very size and nature, can act as probes and interfaces to biosystems and offer solutions to some of these challenges. At the nanoscale, material properties emerge that can be exploited for localizing biomolecules and making chemical measurements at cellular and subcellular scales. Here, we review advances in chemical imaging enabled by nanoscale structures, in the use of nanoparticles as chemical and environmental probes, and in the development of micro- and nanoscale fluidic devices to define and manipulate local environments and facilitate chemical measurements of complex biosystems. Integration of these nano-enabled methods will lead to an unprecedented understanding of biosystem function.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Cimatu, K. A., S. M. Mahurin, K. A. Meyer e R. W. Shaw. "Nanoscale Chemical Imaging of Zinc Oxide Nanowire Corrosion". Journal of Physical Chemistry C 116, n.º 18 (27 de abril de 2012): 10405–14. http://dx.doi.org/10.1021/jp301922a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Kelly, K. F., E. T. Mickelson, R. H. Hauge, J. L. Margrave e N. J. Halas. "Nanoscale imaging of chemical interactions: Fluorine on graphite". Proceedings of the National Academy of Sciences 97, n.º 19 (29 de agosto de 2000): 10318–21. http://dx.doi.org/10.1073/pnas.190325397.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Kumar, Naresh, Bert M. Weckhuysen, Andrew J. Wain e Andrew J. Pollard. "Nanoscale chemical imaging using tip-enhanced Raman spectroscopy". Nature Protocols 14, n.º 4 (25 de março de 2019): 1169–93. http://dx.doi.org/10.1038/s41596-019-0132-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Prater, C. B., M. Lo, Q. Hu, H. Yang, C. Marcott e K. Kjoller. "Nanoscale Chemical Imaging via AFM coupled IR Spectroscopy". Microscopy and Microanalysis 21, S3 (agosto de 2015): 1869–70. http://dx.doi.org/10.1017/s1431927615010120.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Roy, Anirban. "Latest Advances in Nanoscale Chemical Imaging and Spectroscopy". Microscopy and Microanalysis 26, S2 (30 de julho de 2020): 1802–3. http://dx.doi.org/10.1017/s143192762001939x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Nirwan, Jorabar Singh, Barbara R. Conway e Muhammad Usman Ghori. "In situ3D nanoscale advanced imaging algorithms with integrated chemical imaging for the characterisation of pharmaceuticals". RSC Advances 9, n.º 28 (2019): 16119–29. http://dx.doi.org/10.1039/c9ra01434a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Mikhalchan, Anastasiia, Agnieszka M. Banas, Krzysztof Banas, Anna M. Borkowska, Michal Nowakowski, Mark B. H. Breese, Wojciech M. Kwiatek, Czeslawa Paluszkiewicz e Tong Earn Tay. "Revealing Chemical Heterogeneity of CNT Fiber Nanocomposites via Nanoscale Chemical Imaging". Chemistry of Materials 30, n.º 6 (28 de fevereiro de 2018): 1856–64. http://dx.doi.org/10.1021/acs.chemmater.7b04065.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Pollard, Benjamin, e Markus B. Raschke. "Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains". Beilstein Journal of Nanotechnology 7 (22 de abril de 2016): 605–12. http://dx.doi.org/10.3762/bjnano.7.53.

Texto completo da fonte
Resumo:
Intermolecular interactions and nanoscale phase separation govern the properties of many molecular soft-matter systems. Here, we combine infrared vibrational scattering scanning near-field optical microscopy (IR s-SNOM) with force–distance spectroscopy for simultaneous characterization of both nanoscale optical and nanomechanical molecular properties through hybrid imaging. The resulting multichannel images and correlative analysis of chemical composition, spectral IR line shape, modulus, adhesion, deformation, and dissipation acquired for a thin film of a nanophase separated block copolymer (PS-b-PMMA) reveal complex structural variations, in particular at domain interfaces, not resolved in any individual signal channel alone. These variations suggest that regions of multicomponent chemical composition, such as the interfacial mixing regions between microdomains, are correlated with high spatial heterogeneity in nanoscale material properties.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

SUZUKI, Misao. "AFM/IR Nanoscale Chemical Identification for Materials Science Imaging". Journal of the Surface Finishing Society of Japan 66, n.º 12 (2015): 590–93. http://dx.doi.org/10.4139/sfj.66.590.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Hauch, Anne, Jacob Ross Bowen, Luise Theil Kuhn e Mogens Mogensen. "Nanoscale Chemical Analysis and Imaging of Solid Oxide Cells". Electrochemical and Solid-State Letters 11, n.º 3 (2008): B38. http://dx.doi.org/10.1149/1.2828845.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Schmidt, Joel E., Linqing Peng, Jonathan D. Poplawsky e Bert M. Weckhuysen. "Nanoscale Chemical Imaging of Zeolites Using Atom Probe Tomography". Angewandte Chemie International Edition 57, n.º 33 (13 de agosto de 2018): 10422–35. http://dx.doi.org/10.1002/anie.201712952.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Zheng, Haimei. "Imaging, understanding, and control of nanoscale materials transformations". MRS Bulletin 46, n.º 5 (maio de 2021): 443–50. http://dx.doi.org/10.1557/s43577-021-00113-4.

Texto completo da fonte
Resumo:
AbstractThe development of liquid cells for transmission electron microscopy has enabled breakthroughs in our ability to follow nanoscale structural, morphological, or chemical changes during materials growth and applications. Time-resolved high-resolution imaging and chemical analysis through liquids opened the opportunity to capture nanoscale dynamic processes of materials, including reaction intermediates and the transformation pathways. In this article, a series of work is highlighted with topics ranging from liquid cell developments to in situ studies of nanocrystal growth and transformations, dendrite formation, and suppression of lithium dendrites through in situ characterization of the solid–electrolyte interphase chemistry. The understanding garnered is expected to accelerate the discovery of novel materials for applications in energy storage, catalysis, sensors, and other functional devices.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Kumar, Naresh, Weitao Su, Martin Veselý, Bert M. Weckhuysen, Andrew J. Pollard e Andrew J. Wain. "Nanoscale chemical imaging of solid–liquid interfaces using tip-enhanced Raman spectroscopy". Nanoscale 10, n.º 4 (2018): 1815–24. http://dx.doi.org/10.1039/c7nr08257f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Stroud, Rhonda M., Jeffrey W. Long, Karen E. Swider-Lyons e Debra R. Rolison. "Nanoscale Structural and Chemical Segregation in Pt50Ru50 Electrocatalysts". Microscopy and Microanalysis 7, S2 (agosto de 2001): 1112–13. http://dx.doi.org/10.1017/s1431927600031639.

Texto completo da fonte
Resumo:
To address how the chemical and structural heterogeneity of Pt50Ru50 nanoparticles affects methanol oxidation activity, we have employed an arsenal of transmission electron microscopy techniques (conventional bright field-imaging, selected area diffraction, atomic-resolution lattice imaging, electron-energy loss spectroscopy, and energy-dispersive x-ray spectroscopy) to characterize 2.5-nm particles in differing oxidation and hydration states. Our studies demonstrate that electrocatalysts containing a high fraction of Ru-rich hydrous oxide, as apposed to the anhydrous PtRu bimetallic alloy, have as much as 250x higher methanol oxidation activityThe nominally 2.5-nm Pt50Ru50 particles were studied in as-received, reduced and reoxidized forms. The reducing treatment consisted of 2 h at 100 °C in flowing 10% PL/argon mixture. For re-oxidation, the reduced particles were heated for 20 h at 100 °C in an H2O-saturated oxygen atmosphere. The particles were suspended in methanol, and pipetted onto holey-carboncoated Cu grids for TEM studies.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Kurouski, Dmitry, Alexandre Dazzi, Renato Zenobi e Andrea Centrone. "Infrared and Raman chemical imaging and spectroscopy at the nanoscale". Chemical Society Reviews 49, n.º 11 (2020): 3315–47. http://dx.doi.org/10.1039/c8cs00916c.

Texto completo da fonte
Resumo:
The advent of nanotechnology, and the need to understand the chemical composition at the nanoscale, has stimulated the convergence of IR and Raman spectroscopy with scanning probe methods, resulting in new nanospectroscopy paradigms.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Limpert, Jens, e Jan Rothhardt. "High Average Power High-Harmonic EUV Sources and High Performance Imaging at the Nanoscale". EPJ Web of Conferences 307 (2024): 03001. http://dx.doi.org/10.1051/epjconf/202430703001.

Texto completo da fonte
Resumo:
We will report about the development of fiber-laser-driven high harmonic sources with output power currently exceeding 10 mW. This exceptional performance, combined with structured illumination approaches, enables nanoscale imaging and mapping of the chemical composition of semiconductor- and biological samples at the nanoscale.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Meng, Yifan, Chaohong Gao, Zheng Lin, Wei Hang e Benli Huang. "Nanoscale laser-induced breakdown spectroscopy imaging reveals chemical distribution with subcellular resolution". Nanoscale Advances 2, n.º 9 (2020): 3983–90. http://dx.doi.org/10.1039/d0na00380h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Grauby, Stéphane, Aymen Ben Amor, Géraldine Hallais, Laetitia Vincent e Stefan Dilhaire. "Imaging Thermoelectric Properties at the Nanoscale". Nanomaterials 11, n.º 5 (1 de maio de 2021): 1199. http://dx.doi.org/10.3390/nano11051199.

Texto completo da fonte
Resumo:
Based on our previous experimental AFM set-up specially designed for thermal conductivity measurements at the nanoscale, we have developed and validated a prototype which offers two major advantages. On the one hand, we can simultaneously detect various voltages, providing, at the same time, both thermal and electrical properties (thermal conductivity, electrical conductivity and Seebeck coefficient). On the other hand, the AFM approach enables sufficient spatial resolution to produce images of nanostructures such as nanowires (NWs). After a software and hardware validation, we show the consistency of the signals measured on a gold layer on a silicon substrate. Finally, we demonstrate that the imaging of Ge NWs can be achieved with the possibility to extract physical properties such as electrical conductivity and Seebeck coefficient, paving the way to a quantitative estimation of the figure of merit of nanostructures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Tuteja, Mohit, Minjee Kang, Cecilia Leal e Andrea Centrone. "Nanoscale partitioning of paclitaxel in hybrid lipid–polymer membranes". Analyst 143, n.º 16 (2018): 3808–13. http://dx.doi.org/10.1039/c8an00838h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Genoud, Sian, Michael W. M. Jones, Benjamin Guy Trist, Junjing Deng, Si Chen, Dominic James Hare e Kay L. Double. "Simultaneous structural and elemental nano-imaging of human brain tissue". Chemical Science 11, n.º 33 (2020): 8919–27. http://dx.doi.org/10.1039/d0sc02844d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

JUNG, MI-YOUNG, S. S. CHOI, C. J. KANG e Y. KUK. "FABRICATION OF BIMETALLIC CANTILEVERS AND ITS CHARACTERIZATION". Surface Review and Letters 06, n.º 06 (dezembro de 1999): 1195–99. http://dx.doi.org/10.1142/s0218625x99001335.

Texto completo da fonte
Resumo:
Most SPM sensors utilize a current-imaging technique or force-imaging techniques that allow imaging nanoscale topography of the surface using a nanoscale tip on cantilever. In this work, the various cantilevers were microfabricated with a SiO 2 thin film or a Si 3 N 4 thin film. Thermal imaging technique using microfabricated Si 3 N 4 cantilevers has been investigated. The temperature change and heat flow across the fabricated bimetallic cantilever will create angular bending of the bimetallic metal-coated lever. Its thermal response was qualitatively examined during an endothermic chemical reaction using optical deflection methods. The chemical used in this experiment is the tetradecanol CH 3( CH 2)13 OH , with a known theoretical phase transition temperature of ~ 313 K.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Poplawsky, Jonathan, Sophie Van Vreeswijk, Joel Schmidt, Matteo Monai, Florian Zand e Bert Weckhuysen. "Nanoscale Chemical Imaging in Zeolite Catalysts by Atom Probe Tomography". Microscopy and Microanalysis 27, S1 (30 de julho de 2021): 984–85. http://dx.doi.org/10.1017/s1431927621003731.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Stadler, J., T. Schmid e R. Zenobi. "Nanoscale Chemical Imaging Using Top-Illumination Tip-Enhanced Raman Spectroscopy". Nano Letters 10, n.º 11 (10 de novembro de 2010): 4514–20. http://dx.doi.org/10.1021/nl102423m.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

El-Khoury, Patrick Z., Tyler W. Ueltschi, Amanda L. Mifflin, Dehong Hu e Wayne P. Hess. "Frequency-Resolved Nanoscale Chemical Imaging of 4,4′-Dimercaptostilbene on Silver". Journal of Physical Chemistry C 118, n.º 47 (12 de novembro de 2014): 27525–30. http://dx.doi.org/10.1021/jp509082c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Wieland, Karin, Georg Ramer, Victor U. Weiss, Guenter Allmaier, Bernhard Lendl e Andrea Centrone. "Nanoscale chemical imaging of individual chemotherapeutic cytarabine-loaded liposomal nanocarriers". Nano Research 12, n.º 1 (27 de setembro de 2018): 197–203. http://dx.doi.org/10.1007/s12274-018-2202-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Ortega-Arroyo, Jaime, Andrew J. Bissette, Philipp Kukura e Stephen P. Fletcher. "Visualization of the spontaneous emergence of a complex, dynamic, and autocatalytic system". Proceedings of the National Academy of Sciences 113, n.º 40 (16 de setembro de 2016): 11122–26. http://dx.doi.org/10.1073/pnas.1602363113.

Texto completo da fonte
Resumo:
Autocatalytic chemical reactions are widely studied as models of biological processes and to better understand the origins of life on Earth. Minimal self-reproducing amphiphiles have been developed in this context and as an approach to de novo “bottom–up” synthetic protocells. How chemicals come together to produce living systems, however, remains poorly understood, despite much experimentation and speculation. Here, we use ultrasensitive label-free optical microscopy to visualize the spontaneous emergence of an autocatalytic system from an aqueous mixture of two chemicals. Quantitative, in situ nanoscale imaging reveals heterogeneous self-reproducing aggregates and enables the real-time visualization of the synthesis of new aggregates at the reactive interface. The aggregates and reactivity patterns observed vary together with differences in the respective environment. This work demonstrates how imaging of chemistry at the nanoscale can provide direct insight into the dynamic evolution of nonequilibrium systems across molecular to microscopic length scales.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Pattammattel, A., R. Tappero, M. Ge, Y. S. Chu, X. Huang, Y. Gao e H. Yan. "High-sensitivity nanoscale chemical imaging with hard x-ray nano-XANES". Science Advances 6, n.º 37 (setembro de 2020): eabb3615. http://dx.doi.org/10.1126/sciadv.abb3615.

Texto completo da fonte
Resumo:
Resolving chemical species at the nanoscale is of paramount importance to many scientific and technological developments across a broad spectrum of disciplines. Hard x-rays with excellent penetration power and high chemical sensitivity are suitable for speciation of heterogeneous (thick) materials. Here, we report nanoscale chemical speciation by combining scanning nanoprobe and fluorescence-yield x-ray absorption near-edge structure (nano-XANES). First, the resolving power of nano-XANES was demonstrated by mapping Fe(0) and Fe(III) states of a reference sample composed of stainless steel and hematite nanoparticles with 50-nm scanning steps. Nano-XANES was then used to study the trace secondary phases in lithium iron phosphate (LFP) particles. We observed individual Fe-phosphide nanoparticles in pristine LFP, whereas partially (de)lithiated particles showed Fe-phosphide nanonetworks. These findings shed light on the contradictory reports on Fe-phosphide morphology in the literature. Nano-XANES bridges the capability gap of spectromicroscopy methods and provides exciting research opportunities across multiple disciplines.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Dhakal, Krishna P., Shrawan Roy, Seok Joon Yun, Ganesh Ghimire, Changwon Seo e Jeongyong Kim. "Heterogeneous modulation of exciton emission in triangular WS2 monolayers by chemical treatment". Journal of Materials Chemistry C 5, n.º 27 (2017): 6820–27. http://dx.doi.org/10.1039/c7tc01833a.

Texto completo da fonte
Resumo:
Spatially heterogeneous effects of bis(trifluoromethane)sulfonimide (TFSI) and benzyl viologen (BV) treatment on the optical properties of triangular monolayer tungsten disulfides are investigated by nanoscale spectral imaging.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Zhu, Qianqian, Rui Zhou, Jun Liu, Jianzhong Sun e Qianqian Wang. "Recent Progress on the Characterization of Cellulose Nanomaterials by Nanoscale Infrared Spectroscopy". Nanomaterials 11, n.º 5 (20 de maio de 2021): 1353. http://dx.doi.org/10.3390/nano11051353.

Texto completo da fonte
Resumo:
Researches of cellulose nanomaterials have seen nearly exponential growth over the past several decades for versatile applications. The characterization of nanostructural arrangement and local chemical distribution is critical to understand their role when developing cellulose materials. However, with the development of current characterization methods, the simultaneous morphological and chemical characterization of cellulose materials at nanoscale resolution is still challenging. Two fundamentally different nanoscale infrared spectroscopic techniques, namely atomic force microscope based infrared spectroscopy (AFM-IR) and infrared scattering scanning near field optical microscopy (IR s-SNOM), have been established by the integration of AFM with IR spectroscopy to realize nanoscale spatially resolved imaging for both morphological and chemical information. This review aims to summarize and highlight the recent developments in the applications of current state-of-the-art nanoscale IR spectroscopy and imaging to cellulose materials. It briefly outlines the basic principles of AFM-IR and IR s-SNOM, as well as their advantages and limitations to characterize cellulose materials. The uses of AFM-IR and IR s-SNOM for the understanding and development of cellulose materials, including cellulose nanomaterials, cellulose nanocomposites, and plant cell walls, are extensively summarized and discussed. The prospects of future developments in cellulose materials characterization are provided in the final part.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Garcia-Giner, Victoria, Zexiang Han, Finn Giuliani e Alexandra E. Porter. "Nanoscale Imaging and Analysis of Bone Pathologies". Applied Sciences 11, n.º 24 (17 de dezembro de 2021): 12033. http://dx.doi.org/10.3390/app112412033.

Texto completo da fonte
Resumo:
Understanding the properties of bone is of both fundamental and clinical relevance. The basis of bone’s quality and mechanical resilience lies in its nanoscale building blocks (i.e., mineral, collagen, non-collagenous proteins, and water) and their complex interactions across length scales. Although the structure–mechanical property relationship in healthy bone tissue is relatively well characterized, not much is known about the molecular-level origin of impaired mechanics and higher fracture risks in skeletal disorders such as osteoporosis or Paget’s disease. Alterations in the ultrastructure, chemistry, and nano-/micromechanics of bone tissue in such a diverse group of diseased states have only been briefly explored. Recent research is uncovering the effects of several non-collagenous bone matrix proteins, whose deficiencies or mutations are, to some extent, implicated in bone diseases, on bone matrix quality and mechanics. Herein, we review existing studies on ultrastructural imaging—with a focus on electron microscopy—and chemical, mechanical analysis of pathological bone tissues. The nanometric details offered by these reports, from studying knockout mice models to characterizing exact disease phenotypes, can provide key insights into various bone pathologies and facilitate the development of new treatments.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Satake, Shin-ichi. "Micro- and Nanoscale Imaging of Fluids in Water Using Refractive-Index-Matched Materials". Nanomaterials 12, n.º 18 (15 de setembro de 2022): 3203. http://dx.doi.org/10.3390/nano12183203.

Texto completo da fonte
Resumo:
Three-dimensional (3D) visualization in water is a technique that, in addition to macroscale visualization, enables micro- and nanoscale visualization via a microfabrication technique, which is particularly important in the study of biological systems. This review paper introduces micro- and nanoscale 3D fluid visualization methods. First, we introduce a specific holographic fluid measurement method that can visualize three-dimensional fluid phenomena; we introduce the basic principles and survey both the initial and latest related research. We also present a method of combining this technique with refractive-index-matched materials. Second, we outline the TIRF method, which is a method for nanoscale fluid measurements, and introduce measurement examples in combination with imprinted materials. In particular, refractive-index-matched materials are unaffected by diffraction at the nanoscale, but the key is to create nanoscale shapes. The two visualization methods reviewed here can also be used for other fluid measurements; however, because these methods can used in combination with refractive-index-matched materials in water, they are expected to be applied to experimental measurements of biological systems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Takahashi, Yasufumi, Andrew I. Shevchuk, Pavel Novak, Yanjun Zhang, Neil Ebejer, Julie V. Macpherson, Patrick R. Unwin et al. "Multifunctional Nanoprobes for Nanoscale Chemical Imaging and Localized Chemical Delivery at Surfaces and Interfaces". Angewandte Chemie International Edition 50, n.º 41 (1 de setembro de 2011): 9638–42. http://dx.doi.org/10.1002/anie.201102796.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Takahashi, Yasufumi, Andrew I. Shevchuk, Pavel Novak, Yanjun Zhang, Neil Ebejer, Julie V. Macpherson, Patrick R. Unwin et al. "Multifunctional Nanoprobes for Nanoscale Chemical Imaging and Localized Chemical Delivery at Surfaces and Interfaces". Angewandte Chemie 123, n.º 41 (1 de setembro de 2011): 9812–16. http://dx.doi.org/10.1002/ange.201102796.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Lee, Seung-Yong, Junyi Shangguan, Judith Alvarado, Sophia Betzler, Stephen J. Harris, Marca M. Doeff e Haimei Zheng. "Unveiling the mechanisms of lithium dendrite suppression by cationic polymer film induced solid–electrolyte interphase modification". Energy & Environmental Science 13, n.º 6 (2020): 1832–42. http://dx.doi.org/10.1039/d0ee00518e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Gomez‐Gonzalez, Miguel A., Mohamed A. Koronfel, Huw Pullin, Julia E. Parker, Paul D. Quinn, Maria D. Inverno, Thomas B. Scott et al. "Nanoscale Chemical Imaging of Nanoparticles under Real‐World Wastewater Treatment Conditions". Advanced Sustainable Systems 5, n.º 7 (5 de maio de 2021): 2100023. http://dx.doi.org/10.1002/adsu.202100023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Stadler, Johannes, Thomas Schmid e Renato Zenobi. "Chemical Imaging on the Nanoscale – Top-Illumination Tip-Enhanced Raman Spectroscopy". CHIMIA International Journal for Chemistry 65, n.º 4 (27 de abril de 2011): 235–39. http://dx.doi.org/10.2533/chimia.2011.235.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Bhattarai, Ashish, e Patrick Z. El-Khoury. "Nanoscale Chemical Reaction Imaging at the Solid–Liquid Interface via TERS". Journal of Physical Chemistry Letters 10, n.º 11 (10 de maio de 2019): 2817–22. http://dx.doi.org/10.1021/acs.jpclett.9b00935.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Ievlev, Anton V., Peter Maksymovych, Sergei V. Kalinin e Olga S. Ovchinnikova. "Multimodal Chemical and Functional Imaging of Nanoscale Transformations Away from Equilibrium". Microscopy and Microanalysis 24, S1 (agosto de 2018): 1042–43. http://dx.doi.org/10.1017/s1431927618005706.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Wang, Le, Haomin Wang, Martin Wagner, Yong Yan, Devon S. Jakob e Xiaoji G. Xu. "Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy". Science Advances 3, n.º 6 (junho de 2017): e1700255. http://dx.doi.org/10.1126/sciadv.1700255.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Zhou, Jigang, Jian Wang, Haitao Fang, Caixia Wu, Jeffrey N. Cutler e Tsun Kong Sham. "Nanoscale chemical imaging and spectroscopy of individual RuO2 coated carbon nanotubes". Chemical Communications 46, n.º 16 (2010): 2778. http://dx.doi.org/10.1039/b921590e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Möbus, G., Z. Saghi, W. Guan, T. Gnanavel, X. Xu e Y. Peng. "Hybrid tomography for structural and chemical 3D imaging on the nanoscale". Journal of Physics: Conference Series 241 (1 de julho de 2010): 012008. http://dx.doi.org/10.1088/1742-6596/241/1/012008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Shao, Feng, Vivian Müller, Yao Zhang, A. Dieter Schlüter e Renato Zenobi. "Nanoscale Chemical Imaging of Interfacial Monolayers by Tip-Enhanced Raman Spectroscopy". Angewandte Chemie 129, n.º 32 (4 de julho de 2017): 9489–94. http://dx.doi.org/10.1002/ange.201703800.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Schmid, Thomas, Lothar Opilik, Carolin Blum e Renato Zenobi. "Nanoscale Chemical Imaging Using Tip-Enhanced Raman Spectroscopy: A Critical Review". Angewandte Chemie International Edition 52, n.º 23 (22 de abril de 2013): 5940–54. http://dx.doi.org/10.1002/anie.201203849.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Shao, Feng, Vivian Müller, Yao Zhang, A. Dieter Schlüter e Renato Zenobi. "Nanoscale Chemical Imaging of Interfacial Monolayers by Tip-Enhanced Raman Spectroscopy". Angewandte Chemie International Edition 56, n.º 32 (4 de julho de 2017): 9361–66. http://dx.doi.org/10.1002/anie.201703800.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia