Literatura científica selecionada sobre o tema "Nanoscale chemical imaging"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Nanoscale chemical imaging".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Nanoscale chemical imaging"
Anderson, IM, JH J. Scott e ZH Levine. "Three-Dimensional Nanoscale Chemical Imaging via EFTEM Spectral Imaging". Microscopy and Microanalysis 12, S02 (31 de julho de 2006): 1550–51. http://dx.doi.org/10.1017/s1431927606068784.
Texto completo da fonteHäberle, T., D. Schmid-Lorch, F. Reinhard e J. Wrachtrup. "Nanoscale nuclear magnetic imaging with chemical contrast". Nature Nanotechnology 10, n.º 2 (5 de janeiro de 2015): 125–28. http://dx.doi.org/10.1038/nnano.2014.299.
Texto completo da fonteStadler, Johannes, Thomas Schmid e Renato Zenobi. "Nanoscale Chemical Imaging of Single-Layer Graphene". ACS Nano 5, n.º 10 (7 de outubro de 2011): 8442–48. http://dx.doi.org/10.1021/nn2035523.
Texto completo da fonteNowak, Derek, William Morrison, H. Kumar Wickramasinghe, Junghoon Jahng, Eric Potma, Lei Wan, Ricardo Ruiz et al. "Nanoscale chemical imaging by photoinduced force microscopy". Science Advances 2, n.º 3 (março de 2016): e1501571. http://dx.doi.org/10.1126/sciadv.1501571.
Texto completo da fonteWilson, Andrew J., Dinumol Devasia e Prashant K. Jain. "Nanoscale optical imaging in chemistry". Chemical Society Reviews 49, n.º 16 (2020): 6087–112. http://dx.doi.org/10.1039/d0cs00338g.
Texto completo da fonteRetterer, Scott T., Jennifer L. Morrell-Falvey e Mitchel J. Doktycz. "Nano-Enabled Approaches to Chemical Imaging in Biosystems". Annual Review of Analytical Chemistry 11, n.º 1 (12 de junho de 2018): 351–73. http://dx.doi.org/10.1146/annurev-anchem-061417-125635.
Texto completo da fonteCimatu, K. A., S. M. Mahurin, K. A. Meyer e R. W. Shaw. "Nanoscale Chemical Imaging of Zinc Oxide Nanowire Corrosion". Journal of Physical Chemistry C 116, n.º 18 (27 de abril de 2012): 10405–14. http://dx.doi.org/10.1021/jp301922a.
Texto completo da fonteKelly, K. F., E. T. Mickelson, R. H. Hauge, J. L. Margrave e N. J. Halas. "Nanoscale imaging of chemical interactions: Fluorine on graphite". Proceedings of the National Academy of Sciences 97, n.º 19 (29 de agosto de 2000): 10318–21. http://dx.doi.org/10.1073/pnas.190325397.
Texto completo da fonteKumar, Naresh, Bert M. Weckhuysen, Andrew J. Wain e Andrew J. Pollard. "Nanoscale chemical imaging using tip-enhanced Raman spectroscopy". Nature Protocols 14, n.º 4 (25 de março de 2019): 1169–93. http://dx.doi.org/10.1038/s41596-019-0132-z.
Texto completo da fontePrater, C. B., M. Lo, Q. Hu, H. Yang, C. Marcott e K. Kjoller. "Nanoscale Chemical Imaging via AFM coupled IR Spectroscopy". Microscopy and Microanalysis 21, S3 (agosto de 2015): 1869–70. http://dx.doi.org/10.1017/s1431927615010120.
Texto completo da fonteTeses / dissertações sobre o assunto "Nanoscale chemical imaging"
Wolf, Daniel, e Christian Kübel. "Electron Tomography for 3D imaging of Nanoscale Materials". Carl Hanser Verlag, 2018. https://slub.qucosa.de/id/qucosa%3A33863.
Texto completo da fonteCooney, Gary Sean. "Spectroscopie Raman exaltée de pointe pour la caractérisation de systèmes biologiques : de l'imagerie chimique et structurale nanométrique à l’air à son développement en milieu liquide". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0267.
Texto completo da fonteThe aims of this thesis are the development of tip-enhanced Raman spectroscopy (TERS) for applications in liquid media, specifically for the study of lipid membranes and amyloid proteins which are implicated in neurodegenerative diseases like Alzheimer’s. TERS overcomes the diffraction limit of conventional Raman spectroscopy by combining the high spatial resolution of scanning probe microscopy with the chemical specificity of surface-enhanced Raman spectroscopy (SERS). By employing a metal-coated nano-tapered scanning probe microscopy probe tip, TERS generates a localised enhancement of the Raman signal at the tip apex. This enables the study of optically non-resonant biomolecules at the nanoscale in a label-free and non-destructive manner. The key challenges that are addressed in this work include the fabrication of TERS-active tips, the optimisation of our novel total-internal reflection (TIR)-TERS system for use in liquid environments, and the handling of the complex data obtained from hyperspectral TERS imaging. Amyloid proteins in the form of Tau fibrils were studied using this TIR-TERS setup with heparin-induced Tau fibrils being a benchmark for evaluating the performance of the system. TERS studies of RNA-induced Tau fibrils provided insight into the underlying formation mechanisms of amyloid fibrils. In addition, these data were used to explore the use of chemometric methods, such as Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA), for their fine analysis. These methods were evaluated in the context of more traditional peak-picking methods. This thesis also details the development of a liquid-compatible TIR-TERS system and its application to the study of supported lipid bilayers in aqueous media. This advancement enables the nanoscale investigation of lipid membranes in biologically relevant media, which is more representative compared to TERS in air. With the outlook of future works investigating protein-lipid interactions, these innovations are crucial for understanding amyloid fibril formation and their deleterious effects on neuronal cells. To conclude, this thesis enhances TERS as a tool for studying biomolecular structures in the context of neurodegenerative diseases at the nanoscale, and the optimised TIR-TERS system provides a platform for future research in biological and biomedical applications
Paulite, Melissa Joanne. "Nanoscale Chemical Imaging of Synthetic and Biological Materials using Apertureless Near-field Scanning Infrared Microscopy". Thesis, 2012. http://hdl.handle.net/1807/34838.
Texto completo da fonteCapítulos de livros sobre o assunto "Nanoscale chemical imaging"
Aronova, M. A., Y. C. Kim, A. A. Sousa, G. Zhang e R. D. Leapman. "Nanoscale Imaging of Chemical Elements in Biomedicine". In IFMBE Proceedings, 357–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14998-6_91.
Texto completo da fonteOvchinnikova, Olga S. "Toward Nanoscale Chemical Imaging: The Intersection of Scanning Probe Microscopy and Mass Spectrometry". In Scanning Probe Microscopy of Functional Materials, 181–98. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7167-8_7.
Texto completo da fonteMehdizadeh, B., K. Vessalas, B. Ben, A. Castel, S. Deilami e H. Asadi. "Advances in Characterization of Carbonation Behavior in Slag-Based Concrete Using Nanotomography". In Lecture Notes in Civil Engineering, 297–308. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_30.
Texto completo da fonteSchmid, Gregor, Martin Obst, Juan Wu e Adam Hitchcock. "3D Chemical Imaging of Nanoscale Biological, Environmental, and Synthetic Materials by Soft X-Ray STXM Spectrotomography". In X-ray and Neutron Techniques for Nanomaterials Characterization, 43–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48606-1_2.
Texto completo da fonteMenoni, C. S., I. Kuznetsov, T. Green, W. Chao, E. R. Bernstein, D. C. Crick e J. J. Rocca. "Soft X-Ray Laser Ablation Mass Spectrometry for Chemical Composition Imaging in Three Dimensions (3D) at the Nanoscale". In Springer Proceedings in Physics, 221–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73025-7_34.
Texto completo da fonteVerrecchia, Eric P., e Luca Trombino. "The Future of Soil Micromorphology". In A Visual Atlas for Soil Micromorphologists, 151–55. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67806-7_6.
Texto completo da fonteLiew, Thomas, R. Ji e G. L. Chen. "High Spatial Resolution Chemical Imaging of Tribo- Surfaces in Magnetic Recording". In Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales, 869–76. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0736-8_62.
Texto completo da fonteSharma, Rohit, Mr Siddhartha, Mr Ghazi e Ms Sweety Pal. "ADVANCEMENT IN MEDICAL IMAGING: NANOTECHNOLOGY". In Futuristic Trends in Chemical Material Sciences & Nano Technology Volume 3 Book 5, 152–63. Iterative International Publishers, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3becs5p2ch2.
Texto completo da fonteChopra, Dimple Sethi. "Nanocomposites in Drug Delivery and Imaging Applications". In Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials, 1539–54. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8591-7.ch063.
Texto completo da fonteChopra, Dimple Sethi. "Nanocomposites in Drug Delivery and Imaging Applications". In Multifunctional Nanocarriers for Contemporary Healthcare Applications, 415–30. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-4781-5.ch015.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Nanoscale chemical imaging"
Greaves, George E., Holger W. Auner, Alexandra E. Porter e Chris C. Phillips. "Nanoscale Mid-IR Spectroscopic Imaging of Cellular Ultrastructure." In Imaging Systems and Applications, ITh5C.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/isa.2024.ith5c.2.
Texto completo da fonteMeng, Zhao-Dong, En-Ming You, Jun Yi e Zhong-Qun Tian. "Single-molecule MIR absorption detection and nanoscale imaging". In CLEO: Applications and Technology, JTh2A.123. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jth2a.123.
Texto completo da fonteSanap, Balaji, Takuo Tanaka e Taka-aki Yano. "SERS Detection of Chemical Reactions Induced by Optical Heat". In JSAP-Optica Joint Symposia, 17a_A34_5. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.17a_a34_5.
Texto completo da fonteXia, Qing, e Ji-Xin Cheng. "Mid-infrared photothermal microscopy: imaging chemicals and chemistry on the nanoscale". In Enhanced Spectroscopies and Nanoimaging 2024, editado por Prabhat Verma e Yung Doug Suh, 36. SPIE, 2024. http://dx.doi.org/10.1117/12.3028124.
Texto completo da fonteKuznetsov, Ilya, Jorge Filevich, Feng Dong, Mark Woolston, Weilun Chao, Erik H. Anderson, Elliot R. Bernstein, Dean C. Crick, Jorge J. Rocca e Carmen S. Menoni. "Ultrasensivite three dimensional nanoscale chemical imaging". In 2015 IEEE Photonics Conference (IPC). IEEE, 2015. http://dx.doi.org/10.1109/ipcon.2015.7323706.
Texto completo da fonteZenobi, Renato. "Tip-enhanced Raman spectroscopy for nanoscale chemical analysis and imaging". In Optical Sensors, editado por Robert A. Lieberman, Francesco Baldini e Jiri Homola. SPIE, 2018. http://dx.doi.org/10.1117/12.2271262.
Texto completo da fonteRose, Volker, John W. Freeland, R. Garrett, I. Gentle, K. Nugent e S. Wilkins. "Nanoscale chemical imaging using synchrotron x-ray enhanced scanning tunneling microscopy". In SRI 2009, 10TH INTERNATIONAL CONFERENCE ON RADIATION INSTRUMENTATION. AIP, 2010. http://dx.doi.org/10.1063/1.3463236.
Texto completo da fonteMenoni, Carmen S. "Nanoscale chemical imaging by extreme ultraviolet laser ablation time of flight spectrometry". In Compact EUV & X-ray Light Sources. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/euvxray.2018.et2b.1.
Texto completo da fonteMenoni, Carmen S., Ilya Kuznetsov e Jorge J. Rocca. "Nanoscale Three Dimensional Chemical Imaging by Extreme Ultraviolet Laser Ablation Mass Spectrometry". In Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/laop.2018.tu3e.1.
Texto completo da fonteMinn, Khant, Blake Birmingham, Howard Lee e Zhenrong Zhang. "Nano-focusing of light with optical fiber probe for nanoscale chemical imaging". In Optical Fibers and Sensors for Medical Diagnostics, Treatment and Environmental Applications XXI, editado por Israel Gannot e Katy Roodenko. SPIE, 2021. http://dx.doi.org/10.1117/12.2581553.
Texto completo da fonteRelatórios de organizações sobre o assunto "Nanoscale chemical imaging"
Lal, Surbhi, e Martha Alexander. A Multimodality Ultramicrospectroscope (MUMS): Nanoscale Imaging with Integrated Spectroscopies for Chemical and Biomolecular Identification. Fort Belvoir, VA: Defense Technical Information Center, novembro de 2010. http://dx.doi.org/10.21236/ada544990.
Texto completo da fonte