Literatura científica selecionada sobre o tema "Nano-Theranostics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Nano-Theranostics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Nano-Theranostics"
Liu, Zhuang, e Xing-Jie Liang. "Nano-Carbons as Theranostics". Theranostics 2, n.º 3 (2012): 235–37. http://dx.doi.org/10.7150/thno.4156.
Texto completo da fonteYoon, Juyoung. "Theranostics based nano probes and nano carriers". Coordination Chemistry Reviews 415 (julho de 2020): 213297. http://dx.doi.org/10.1016/j.ccr.2020.213297.
Texto completo da fonteSharmiladevi, Palani, Koyeli Girigoswami, Viswanathan Haribabu e Agnishwar Girigoswami. "Nano-enabled theranostics for cancer". Materials Advances 2, n.º 9 (2021): 2876–91. http://dx.doi.org/10.1039/d1ma00069a.
Texto completo da fonteKalita, Himani, e Manoj Patowary. "Biocompatible Polymer Nano-Constructs: A Potent Platform for Cancer Theranostics". Technology in Cancer Research & Treatment 22 (janeiro de 2023): 153303382311603. http://dx.doi.org/10.1177/15330338231160391.
Texto completo da fonteLee, Songyi, Thanh Chung Pham, Chaeeon Bae, Yeonghwan Choi, Yong Kyun Kim e Juyoung Yoon. "Nano theranostics platforms that utilize proteins". Coordination Chemistry Reviews 412 (junho de 2020): 213258. http://dx.doi.org/10.1016/j.ccr.2020.213258.
Texto completo da fonteWang, Yong-Mei, Ying Xu, Xinxin Zhang, Yifan Cui, Qingquan Liang, Cunshun Liu, Xinan Wang, Shuqi Wu e Rusen Yang. "Single Nano-Sized Metal–Organic Framework for Bio-Nanoarchitectonics with In Vivo Fluorescence Imaging and Chemo-Photodynamic Therapy". Nanomaterials 12, n.º 2 (17 de janeiro de 2022): 287. http://dx.doi.org/10.3390/nano12020287.
Texto completo da fonteSneider, Alexandra, Derek VanDyke, Shailee Paliwal e Prakash Rai. "Remotely Triggered Nano-Theranostics For Cancer Applications". Nanotheranostics 1, n.º 1 (2017): 1–22. http://dx.doi.org/10.7150/ntno.17109.
Texto completo da fonteYao, Jingwen, Chao-Hsiung Hsu, Zhao Li, Tanya Kim, Lian-Pin Hwang, Ying-Chih Lin e Yung-Ya Lin. "Magnetic Resonance Nano-Theranostics for Glioblastoma Multiforme". Current Pharmaceutical Design 21, n.º 36 (2 de novembro de 2015): 5256–66. http://dx.doi.org/10.2174/1381612821666150923103307.
Texto completo da fonteMousavi, Hajar, Behrooz Movahedi, Ali Zarrabi e Marzieh Jahandar. "A multifunctional hierarchically assembled magnetic nanostructure towards cancer nano-theranostics". RSC Advances 5, n.º 94 (2015): 77255–63. http://dx.doi.org/10.1039/c5ra16776k.
Texto completo da fonteDai, Yan-Dong, Xue-Yi Sun, Wan Sun, Jing-Bo Yang, Rui Liu, Yi Luo, Tao Zhang, Yu Tian, Zhong-Lin Lu e Lan He. "H2O2-responsive polymeric micelles with a benzil moiety for efficient DOX delivery and AIE imaging". Organic & Biomolecular Chemistry 17, n.º 22 (2019): 5570–77. http://dx.doi.org/10.1039/c9ob00859d.
Texto completo da fonteTeses / dissertações sobre o assunto "Nano-Theranostics"
Maturi, Mirko <1993>. "Advanced Functional Organic-Inorganic Hybrid (Nano)Materials: from Theranostics to Organic Electronics and Additive Manufacturing". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9739/1/Maturi_Mirko_tesi.pdf.
Texto completo da fontePerecin, Caio José. "Nanopartículas superparamagnéticas encapsuladas com polímeros para tratamento de câncer por hipertermia". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/82/82131/tde-22062016-103823/.
Texto completo da fonteCancer is one of the greatest causes of mortality in Brazil and in the world, with growing potential for the next decades. A promising treatment alternative is magnetic hyperthermia, in which tumor cells die by the heat generated by magnetic nanoparticles after application of an alternate magnetic field in adequate frequencies. Such particles are also capable of acting as contrast agents for magnetic resonance imaging, a powerful method of diagnosis for the identification of neoplasic cells, which characterizes the combination of properties known as theranostics (therapy and diagnosis). In this work, iron oxide nanoparticles were synthesized by coprecipitation method with subsequent encapsulation by nano spray drying technique, aiming their application on cancer treatment by hyperthermia and on magnetic resonance imaging as a contrast agent. Polymeric matrices of Maltodextrin with Polysorbate 80, Pluronic F68, Eudragit® S100 and PCL with Pluronic F68 were employed for encapsulation, chosen carefully to create particles that disperse well in aqueous media and that are able to address the tumoral target after administration into the patient\'s body. Drying parameters of the Nano Spray Dryer equipment, such as temperature, dispersing medium and reagent concentrations, were evaluated. The generated particles were characterized by Scanning Electron Microscopy, X-Ray Diffraction, Thermogravimetric Analysis, Dynamic Light Scattering, Infrared Spectroscopy, by magnetism in matters of applied magnetic field and temperature, cytotoxic potential and heating potential. Such methods indicated that the coprecipitation method was able to produce magnetite nanoparticles with size of approximately 20 nm, superparamagnetic at room temperature and with no cytotoxic potential. The nano spray drying technique was efficient to produce particles with size of around 1 μm, biocompatible, superparamagnetic and with adequate magnetic properties for the intended applications. The sample OF-10/15-1P stands out with a saturation magnetization of 68.7 emu/g and presenting specific interactions with the tumour cells.
Alaouta, Cherine. "Imagerie moléculaire pour la nano-théranostique : approche par spectroscopie Raman". Electronic Thesis or Diss., Reims, 2024. http://www.theses.fr/2024REIMP201.
Texto completo da fonteAlthough cancer treatment has seen considerable progress, resistance to anticancer therapies remains a major cause of treatment failure. One approach to address this challenge is drug squalenization, a method that involves covalently attaching squalene to active pharmaceutical compounds, thereby generating powerful anticancer agents with self-assembly capabilities. In this study, Raman microspectroscopy was utilized to investigate the effects of the anticancer drugs Gem and DXF, along with squalenized nanoparticles (non-deuterated and deuterated GemSQ, and SQDXF), on breast carcinoma cell lines (MCF7 and MDA-MB-231) and colon carcinoma cell lines (HT-29 and HCT-116).Both Gem and DXF exhibit weak Raman cross sections, making them difficult to detect using Raman spectroscopy at physiological concentrations due to their nucleoside-analogue structures and low fluorescence quantum yield. To enhance the detectability of Gem, it was conjugated with deuterated squalenic acid, producing an analogue with a distinct spectral signature in the 2000-2300 cm⁻¹ range, free from interference by endogenous cell molecules. However, this strategy was not feasible for DXF, and the detection of SQDXF nanoparticles was instead achieved by monitoring their subcellular effects.The results provided valuable insights into the interactions between the drugs and key cellular components such as DNA, RNA, proteins, and lipids, with the findings being linked to the cytotoxic effects of the compounds. This research opens up promising new avenues in nanomedicine
Wu, Linxi. "The impact of nanoconjugation to EGF-induced apoptosis". Thesis, 2016. https://hdl.handle.net/2144/14555.
Texto completo da fonte2017-01-01T00:00:00Z
Livros sobre o assunto "Nano-Theranostics"
Zarepour, Atefeh, Ali Zarrabi e Arezoo Khosravi. SPIONs as Nano-Theranostics Agents. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3563-0.
Texto completo da fonteNano-Pharmacokinetics and Theranostics. Elsevier, 2021. http://dx.doi.org/10.1016/c2020-0-02014-1.
Texto completo da fonteLiu, Qing, e Donglu Shi. Tissue Engineering and Nano Theranostics. World Scientific Publishing Co Pte Ltd, 2017.
Encontre o texto completo da fonteZarepour, Atefeh, Ali Zarrabi e Arezoo Khosravi. SPIONs as Nano-Theranostics Agents. Springer, 2017.
Encontre o texto completo da fonteZarepour, Atefeh, Ali Zarrabi e Arezoo Khosravi. SPIONs as Nano-Theranostics Agents. Springer, 2017.
Encontre o texto completo da fonteThorat, Nanasaheb D., e Nitesh Kumar. Nano-Pharmacokinetics and Theranostics: Advancing Cancer Therapy. Elsevier Science & Technology Books, 2021.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Nano-Theranostics"
Zarepour, Atefeh, Ali Zarrabi e Arezoo Khosravi. "SPIONs as Nano-Theranostics Agents". In SPIONs as Nano-Theranostics Agents, 1–44. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3563-0_1.
Texto completo da fonteIchiyanagi, Yuko. "Magnetic Nanoparticles for Diagnostics and Therapy". In Extracellular Fine Particles, 261–73. Singapore: Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-97-7067-0_18.
Texto completo da fonteJain, Kopal, Nikita Basant e Amit Panwar. "New Developments in Nano-theranostics Combined with Intelligent Bio-responsive Systems". In Smart Nanomaterials Targeting Pathological Hypoxia, 347–65. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1718-1_18.
Texto completo da fonteSaini, Neha, Prem Pandey, Mandar Shirolkar, Atul Kulkarni, Sang-Hyun Moh e Anjali A. Kulkarni. "Role of Carbon Nanostructures as Nano-Theranostics Against Breast and Brain Cancer". In Materials Horizons: From Nature to Nanomaterials, 1151–72. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7188-4_41.
Texto completo da fonteFatima, Syeda Warisul, Shahenvaz Alam e Sunil K. Khare. "Janus Nano-Assembly Based Sensing Platform for Cancer Theranostics: An Unrivaled Mastering Bioimaging Perspective". In Nanoscale Sensors and their Applications in Biomedical Imaging, 225–49. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-3144-2_14.
Texto completo da fontePham, Tuan, Carl Beigie, Yoonjee Park e Joyce Y. Wong. "Microbubbles as Theranostics Agents". In Nano-Oncologicals, 329–50. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08084-0_12.
Texto completo da fonteSingh, Gagandeep, L. Preethi e Neelam Thakur. "Nano–Bio Dynamics". In Nanoparticles in Cancer Theranostics, 53–68. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003463191-4.
Texto completo da fonteSingh, Gagandeep, Arshiya Sood e Neelam Thakur. "Nano Contrast Agents". In Nanoparticles in Cancer Theranostics, 110–22. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003463191-8.
Texto completo da fonteConde, João, Furong Tian, Pedro V. Baptista e Jesús M. de la Fuente. "Multifunctional Gold Nanocarriers for Cancer Theranostics: From Bench to Bedside and Back Again?" In Nano-Oncologicals, 295–328. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08084-0_11.
Texto completo da fonteParihar, Vipan Kumar. "Nano-pharmacokinetics and cancer theranostics". In Nano-Pharmacokinetics and Theranostics, 221–32. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-323-85050-6.00014-1.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Nano-Theranostics"
Delehanty, James B., Juan B. Blanco-Canosa, Christopher E. Bradburne, Kimihiro Susumu, Michael H. Stewart, Duane E. Prasuhn, Philip E. Dawson e Igor L. Medintz. "Controlling the intracellular fate of nano-bioconjugates: pathways for realizing nanoparticle-mediated theranostics". In SPIE NanoScience + Engineering, editado por Hooman Mohseni, Massoud H. Agahi e Manijeh Razeghi. SPIE, 2014. http://dx.doi.org/10.1117/12.2064372.
Texto completo da fonteSuttee, Ashish, e Prashant Tandale. "Graphene oxide based multifunctional nano composite for cancer theranostics: Present clinical and regulatory breakthroughs". In THE FOURTH SCIENTIFIC CONFERENCE FOR ELECTRICAL ENGINEERING TECHNIQUES RESEARCH (EETR2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0162990.
Texto completo da fonteGoswami, Mayank, Xinlei Wang, Pengfei Zhang, Wenwu Xiao, Kit S. Lam, Edward N. Pugh e Robert J. Zawadzki. "Methods for non-surgical cancer nano-theranostics of ocular tumors in the mouse eye (Conference Presentation)". In Ophthalmic Technologies XXVII, editado por Fabrice Manns, Per G. Söderberg e Arthur Ho. SPIE, 2017. http://dx.doi.org/10.1117/12.2251803.
Texto completo da fonteLodi, Matteo B. "A Preliminary Propagation Study on Magnetic Scaffolds for Microwave Theranostics". In 2023 IEEE 23rd International Conference on Nanotechnology (NANO). IEEE, 2023. http://dx.doi.org/10.1109/nano58406.2023.10231176.
Texto completo da fonteChauhan, Deepak Singh, e Rohit Srivastava. "Synthesis and characterization of gold encapsulated and tamoxifen loaded PLGA nanoparticles for breast cancer theranostics". In 2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED). IEEE, 2015. http://dx.doi.org/10.1109/nanomed.2015.7492510.
Texto completo da fonteRelatórios de organizações sobre o assunto "Nano-Theranostics"
Tantsyrev, Anatoliy, Yuliya Titova e Andrey Ivanov. Polysaccharide macromolecules as transport matrices of nano-size compositions, candidates for diagnostics, therapy and theranostics of cancer diseases. Peeref, junho de 2023. http://dx.doi.org/10.54985/peeref.2306p9855801.
Texto completo da fonte