Artigos de revistas sobre o tema "Nail corrosion"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Nail corrosion".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Panagiotopoulou, V. C., K. Davda, H. S. Hothi, J. Henckel, A. Cerquiglini, W. D. Goodier, J. Skinner, A. Hart e P. R. Calder. "A retrieval analysis of the Precice intramedullary limb lengthening system". Bone & Joint Research 7, n.º 7 (julho de 2018): 476–84. http://dx.doi.org/10.1302/2046-3758.77.bjr-2017-0359.r1.
Texto completo da fonteNatasya, Titania, Muthia Embun Khairafah, Murna Sari Br Sembiring e Laura Nazrifah Hutabarat. "Corrosion Factors on Nail". Indonesian Journal of Chemical Science and Technology (IJCST) 5, n.º 1 (1 de março de 2022): 47. http://dx.doi.org/10.24114/ijcst.v5i1.33159.
Texto completo da fonteWu, Haoliang, Jing Yu, Jiajia Zhou, Weiwen Li e Christopher K. Y. Leung. "Experimental Study on Chloride-Induced Corrosion of Soil Nail with Engineered Cementitious Composites (ECC) Grout". Infrastructures 6, n.º 11 (10 de novembro de 2021): 161. http://dx.doi.org/10.3390/infrastructures6110161.
Texto completo da fonteFrommer, Adrien, Robert Roedl, Georg Gosheger, Julian Hasselmann, Cordula Fuest, Gregor Toporowski, Andrea Laufer, Henning Tretow, Martin Schulze e Bjoern Vogt. "Focal osteolysis and corrosion at the junction of Precice Stryde intramedullary lengthening device". Bone & Joint Research 10, n.º 7 (1 de julho de 2021): 425–36. http://dx.doi.org/10.1302/2046-3758.107.bjr-2021-0146.r1.
Texto completo da fonteYanagisawa, Yuta, Yoshinaka Shimizu, Toshiji Mukai, Yuya Sano, Kenji Odashima, Naoko Ikeo, Haruka Saito, Kensuke Yamauchi, Tetsu Takahashi e Hiroyuki Kumamoto. "Biodegradation behaviors of magnesium(Mg)-based alloy nails in autologous bone grafts: In vivo study in rabbit skulls". Journal of Applied Biomaterials & Functional Materials 20 (janeiro de 2022): 228080002210952. http://dx.doi.org/10.1177/22808000221095230.
Texto completo da fonteSantoso, Aman, Novita Agustin, Sumari Sumari, Siti Marfuah, Rini Retnosari, Ihsan Budi Rachman, Anugrah Ricky Wijaya e Muhammad Roy Asrori. "Synthesis of methyl esters from palm oil, candlenut oil, and sunflower seed oil and their corrosion phenomena on iron nail". AIMS Materials Science 9, n.º 5 (2022): 719–32. http://dx.doi.org/10.3934/matersci.2022044.
Texto completo da fonteBane, Marin, Florin Miculescu, Ana Iulia Blajan, Mihaela Dinu e Iulian Antoniac. "Failure Analysis of some Retrieved Orthopedic Implants Based on Materials Characterization". Solid State Phenomena 188 (maio de 2012): 114–17. http://dx.doi.org/10.4028/www.scientific.net/ssp.188.114.
Texto completo da fonteHothi, Harry, Sean Bergiers, Johann Henckel, Alexis D. Iliadis, William David Goodier, Jonathan Wright, John Skinner, Peter Calder e Alister J. Hart. "Analysis of retrieved STRYDE nails". Bone & Joint Open 2, n.º 8 (1 de agosto de 2021): 599–610. http://dx.doi.org/10.1302/2633-1462.28.bjo-2021-0126.
Texto completo da fonteCheng, Y. M., e Wen Bing Wei. "Application of Innovative GFRP Pipe Soil Nail System in Hong Kong". Key Engineering Materials 353-358 (setembro de 2007): 3006–9. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.3006.
Texto completo da fonteGhiban, Brandusa, Iulian Antoniac, Gheorghe Dan, Alexandru Ghiban e Razvan Ene. "Metallurgical Failure Analysis of Intramedullary Nail Used for Femoral Fracture Stabilization". Key Engineering Materials 695 (maio de 2016): 178–82. http://dx.doi.org/10.4028/www.scientific.net/kem.695.178.
Texto completo da fonteLosertová, Monika, Jaromír Drápala, Kateřina Konečná e Leopold Pleva. "Study of Fracture Feature of Titanium Based Alloys for Biocompatible Implants after Removal from Human Body". Materials Science Forum 782 (abril de 2014): 449–52. http://dx.doi.org/10.4028/www.scientific.net/msf.782.449.
Texto completo da fonteZelinka, Samuel L., e Douglas R. Rammer. "Modeling the Effect of Nail Corrosion on the Lateral Strength of Joints". Forest Products Journal 62, n.º 3 (maio de 2012): 160–66. http://dx.doi.org/10.13073/0015-7473-62.3.160.
Texto completo da fonteHernández, Y., O. Troconis de Rincón, A. Torres, S. Delgado, J. Rodríguez e O. Morón. "Relación entre la velocidad de corrosión de la armadura y el ancho de fisuras en vigas de concreto armado expuestas a ambientes que simulan el medio marino". Revista ALCONPAT 6, n.º 3 (30 de setembro de 2016): 272–83. http://dx.doi.org/10.21041/ra.v6i3.152.
Texto completo da fonteTakanashi, Ryuya, Kei Sawata, Yoshihisa Sasaki e Akio Koizumi. "Withdrawal strength of nailed joints with decay degradation of wood and nail corrosion". Journal of Wood Science 63, n.º 2 (2 de dezembro de 2016): 192–98. http://dx.doi.org/10.1007/s10086-016-1600-5.
Texto completo da fonteHlava, Paul, Jeff Braithwaite e Rob Sorensen. "Microprobe study of diode corrosion". Proceedings, annual meeting, Electron Microscopy Society of America 54 (11 de agosto de 1996): 214–15. http://dx.doi.org/10.1017/s0424820100163538.
Texto completo da fonteOlawale, O., J. O. Bello, B. T. Ogunsemi, U. C. Uchella, A. P. Oluyori e N. K. Oladejo. "Optimization of chicken nail extracts as corrosion inhibitor on mild steel in 2M H2SO4". Heliyon 5, n.º 11 (novembro de 2019): e02821. http://dx.doi.org/10.1016/j.heliyon.2019.e02821.
Texto completo da fonteKumar, Prashant. "Clinical Performance of Intramedullary Nailing system for Tibia Fractures: A Retrospective study". International Journal of Clinical Case Reports and Reviews 7, n.º 03 (25 de junho de 2021): 01–05. http://dx.doi.org/10.31579/2690-4861/124.
Texto completo da fonteZuurmond, Rutger G., Peter Pilot, Aart D. Verburg, Pieter Buma e Sjoerd K. Bulstra. "No significant corrosion after bridging nail osteosynthesis of a periprosthetic fractured femur: A retrieval report". Injury Extra 40, n.º 1 (janeiro de 2009): 19–23. http://dx.doi.org/10.1016/j.injury.2008.10.005.
Texto completo da fonteMahecha-Gómez, Andrey Felipe, Claudia Patricia Mejía-Villagrán e Jhon Jairo Olaya-Flórez. "Aplicación de una metodología mixta para la selección de materiales resistentes a la corrosión en medios ácidos y salinos". Respuestas 20, n.º 1 (1 de janeiro de 2015): 112. http://dx.doi.org/10.22463/0122820x.265.
Texto completo da fonteNurhikmah, Nurhikmah, e Minarni R. Jura. "Concentration Effect of Watermelon Skin Extracts (Albedo) as Organic Inhibitors on the Corrosion of Iron Nails in 3% NaCl Medium Solution". Jurnal Akademika Kimia 10, n.º 3 (30 de agosto de 2021): 153–58. http://dx.doi.org/10.22487/j24775185.2021.v10.i3.pp153-158.
Texto completo da fonteKSIĄŻEK, Mariusz. "The Use of Sulfur Waste to Protect Against Corrosion of Metal Implants". Recent Progress in Materials 03, n.º 02 (24 de março de 2021): 1. http://dx.doi.org/10.21926/rpm.2102024.
Texto completo da fonteZhang, Hongfei, Yue Shen, Yutian Ding, Ruimin Li e Jian Lei. "In vitro corrosion and in vivo behavior of high strength Mg-6Zn-1Mn alloy wire for gastrointestinal anastomosis nail application". Biomaterials Advances 142 (novembro de 2022): 213159. http://dx.doi.org/10.1016/j.bioadv.2022.213159.
Texto completo da fonteBrezinová, J., J. Koncz, D. Draganovská e A. Guzanová. "The evaluation of corrosion properties of coated materials by utilization of EIS". Koroze a ochrana materialu 60, n.º 2 (1 de junho de 2016): 35–40. http://dx.doi.org/10.1515/kom-2016-0006.
Texto completo da fonteJournal, Baghdad Science. "Some Non-destructive Testing for Al metal in 0.1N of NaCl and NaOH". Baghdad Science Journal 8, n.º 4 (4 de dezembro de 2011): 988–95. http://dx.doi.org/10.21123/bsj.8.4.988-995.
Texto completo da fonteMoon, Kyung Man, Myeong Hoon Lee e Tae Sil Baek. "Effect of Osmotic Pressure by Salt Concentration on Corrosion Resistance of Anti-Corrosive Paint". Materials Science Forum 926 (julho de 2018): 31–36. http://dx.doi.org/10.4028/www.scientific.net/msf.926.31.
Texto completo da fonteRuela, Marcela São Paulo, e Dalila Moreira da Silveira. "CORROSÃO DE AÇO GALVANIZADO EM SOLUÇÕES ÁCIDAS". Journal of Engineering and Exact Sciences 3, n.º 8 (4 de outubro de 2017): 1250–58. http://dx.doi.org/10.18540/jcecvl3iss8pp1250-1258.
Texto completo da fonteLi, Yun, Shi Zhi Shang, Ming Cheng, Liang Xu e Shi Hong Zhang. "Corrosion Behavior of Zr53.5Cu26.5Ni5Al12Ag3 Bulk Amorphous Alloy in 3.5% NaCl Solution". Advanced Materials Research 299-300 (julho de 2011): 427–31. http://dx.doi.org/10.4028/www.scientific.net/amr.299-300.427.
Texto completo da fonteLiu, Guan Guo, Ai Bin Ma, Chao Ming Pang, Ping Zhang, Hong Gen Qin e Lun Wang. "Corrosion Behavior of F30S30 Concrete under Wet-Dry Cycles in Simulated Seawater with Magnesium Salt and Sulfate". Advanced Materials Research 936 (junho de 2014): 1366–72. http://dx.doi.org/10.4028/www.scientific.net/amr.936.1366.
Texto completo da fonteZhang, Yifeng, Wei Chen, Hanbing Yan, Xuefeng Wang, Hanping Zhang e Shijing Wu. "The Effect of Atmospheric Chloride Ions on the Corrosion Fatigue of Metal Wire Clips in Power Grids". Atmosphere 14, n.º 2 (25 de janeiro de 2023): 237. http://dx.doi.org/10.3390/atmos14020237.
Texto completo da fonteStarosta, Robert. "Influence of Seawater Salinity on Corrosion of Austenitic Steel". Journal of KONES 26, n.º 3 (1 de setembro de 2019): 219–25. http://dx.doi.org/10.2478/kones-2019-0076.
Texto completo da fonteZhang, Ye Qin, Li Chun Qi e Yi Sheng Huang. "Anticorrosion Property of TC27 Titanium Alloys and Application Evaluation in Tubing". Materials Science Forum 1035 (22 de junho de 2021): 615–23. http://dx.doi.org/10.4028/www.scientific.net/msf.1035.615.
Texto completo da fonteMichailidis, Nikolaos, Antonios Ragousis, Fani Stergioudi e Homero Castaneda. "The footprint of surface modification treatments on the corrosion-fatigue of AA7075-T651". MATEC Web of Conferences 188 (2018): 03011. http://dx.doi.org/10.1051/matecconf/201818803011.
Texto completo da fonteSaloum, S., B. Alkhaled, W. Alsadat, M. Kakhia e S. A. Shaker. "Plasma polymerized hexamethyldisiloxane thin films for corrosion protection". Modern Physics Letters B 32, n.º 03 (29 de janeiro de 2018): 1850036. http://dx.doi.org/10.1142/s0217984918500367.
Texto completo da fonteLi, Peng, Xiya Huang e Dejun Kong. "Corrosive wear and electrochemical corrosion performances of arc sprayed Al coating in 3.5% NaCl solution". Anti-Corrosion Methods and Materials 68, n.º 2 (8 de março de 2021): 95–104. http://dx.doi.org/10.1108/acmm-08-2020-2357.
Texto completo da fonteDiana, Nia, Ediman Ginting e Pulung Karo Karo. "The Effect of Cacao Leaf Extract as An Inhibitor with A Concentration Variation of 0%, 3%, 5%, And 7% on The Corrosion Rate of St 37 Steel with Immersion Time of 3 Days And 6 Days in NaCl Corrosive Medium 3%". Journal of Energy, Material, and Instrumentation Technology 3, n.º 4 (30 de novembro de 2022): 138–46. http://dx.doi.org/10.23960/jemit.v3i4.114.
Texto completo da fonteZhang, Jifu, Chunming Deng, Jinbing Song, Changguang Deng, Min Liu e Mingjiang Dai. "Electrochemical Corrosive Behaviors of Fe-Based Amorphous/ Nanocrystalline Coating on Stainless Steel Prepared by HVOF-Sprayed". Coatings 9, n.º 4 (29 de março de 2019): 226. http://dx.doi.org/10.3390/coatings9040226.
Texto completo da fonteWang, Qing Juan, Y. C. Wang, Zhong Ze Du e Xiao Yan Liu. "Investigation on Corrosion Behaviors of Ultra-Fine Grain Copper in 3.5% NaCl Solution". Materials Science Forum 667-669 (dezembro de 2010): 1125–30. http://dx.doi.org/10.4028/www.scientific.net/msf.667-669.1125.
Texto completo da fonteNaing, Thet Htet, Somjai Janudom, Vishnu Rachpech, Narisara Mahathaninwonga e Somkid Thiwong. "Corrosion Behavior of Galvanized Steel for Porcelain Insulator’s Pin in HVAC Transmission Line". Key Engineering Materials 803 (maio de 2019): 45–49. http://dx.doi.org/10.4028/www.scientific.net/kem.803.45.
Texto completo da fonteChen, Xuedan, Qilong Liao, Min Gong e Qingshan Fu. "Corrosion Performances of Selective Laser Melting Ti6Al4V Alloy in Different Solutions". Metals 13, n.º 2 (18 de janeiro de 2023): 192. http://dx.doi.org/10.3390/met13020192.
Texto completo da fonteYan, Rui, Ting Liang, Hong Chun Ren, Jin Gu e Zhuang Zhou Ji. "Study on Corrosion Behaviors of Epoxy Aluminum Coating Immersed in 3.5%NaCl Solution". Advanced Materials Research 912-914 (abril de 2014): 338–41. http://dx.doi.org/10.4028/www.scientific.net/amr.912-914.338.
Texto completo da fontePrateepasen, Asa, Chalermkiat Jirarungsatean e Pongsak Tuengsook. "Identification of AE Source in Corrosion Process". Key Engineering Materials 321-323 (outubro de 2006): 545–48. http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.545.
Texto completo da fonteDawood, Nawal Mohammed. "Erosion-Corrosion Behavior of Al-20%Ni-Al2O3 Metal Matrix Composites by Stir Casting". Materials Science Forum 1002 (julho de 2020): 161–74. http://dx.doi.org/10.4028/www.scientific.net/msf.1002.161.
Texto completo da fonteReza Bateni, M., Jerzy A. Szpunar, X. Wang e Dong Yang Li. "Texture Changes of Carbon Steel and Stainless Steel as a Result of Wear". Materials Science Forum 495-497 (setembro de 2005): 441–46. http://dx.doi.org/10.4028/www.scientific.net/msf.495-497.441.
Texto completo da fonteKang, Zhi Xin, Yuan Yuan Li e Kunio Mori. "Application of Polymer Plating to Inhibit Corrosion of Magnesium Alloy". Materials Science Forum 488-489 (julho de 2005): 661–64. http://dx.doi.org/10.4028/www.scientific.net/msf.488-489.661.
Texto completo da fonteKrishna Prasad, M., K. Srinivasa Rao, Madhusudhan Reddy e Gosipathala Sreedhar. "Hot Corrosion of SrTiO3 Perovskite in Na2SO4 + 50 wt.% V2O5 and Na2SO4 + 10 wt.% NaCl Environments at 900°C". International Journal of Corrosion 2018 (2018): 1–7. http://dx.doi.org/10.1155/2018/4763085.
Texto completo da fontePradityana, Atria, Sulistijono, Abdullah Shahab, Lukman Noerochim e Diah Susanti. "Inhibition of Corrosion of Carbon Steel in 3.5% NaCl Solution byMyrmecodia PendansExtract". International Journal of Corrosion 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/6058286.
Texto completo da fonteKartikasari, Ratna, Soekrisno Soekrisno, M. Noer Ilman e Suyitno Suyitno. "Hardenability and corroson resistance of as cast Fe-9Al-0,6C alloy". Material Science Research India 7, n.º 1 (25 de junho de 2010): 107–14. http://dx.doi.org/10.13005/msri/070112.
Texto completo da fonteRaczkiewicz, Wioletta, Artur Wójcicki e Adam Wójcicki. "Using the galvanostatic pulse method to estimate the corrosion of reinforcement in structural elements". South Florida Journal of Development 2, n.º 3 (9 de agosto de 2021): 4865–76. http://dx.doi.org/10.46932/sfjdv2n3-080.
Texto completo da fonteNayyef Farhan, Entesar. "g EFFECT OF VIBRATION-CORROSION ON ALUMINUM ALLOY(DIN1100) THAT WELDED BY TIG TECHNIQUE AND OPERATING IN THE MARINE ENVIRONMENT". IRAQI JOURNAL FOR MECHANICAL AND MATERIALS ENGINEERING 20, n.º 1 (26 de março de 2020): 77–86. http://dx.doi.org/10.32852/iqjfmme.v20i1.463.
Texto completo da fonteCharalampidou, Christina Margarita, Christiaan C. E. Pretorius, Roelf J. Mostert e Nikolaos D. Alexopoulos. "Effect of Solution Aggressiveness on the Crack Growth Resistance and Cracking Mechanism of AA2024-T3". Corrosion 77, n.º 9 (21 de junho de 2021): 1029–40. http://dx.doi.org/10.5006/3839.
Texto completo da fonte