Artigos de revistas sobre o tema "Na3(VO)2(PO4)2F"

Siga este link para ver outros tipos de publicações sobre o tema: Na3(VO)2(PO4)2F.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 17 melhores artigos de revistas para estudos sobre o assunto "Na3(VO)2(PO4)2F".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Lin, Zhi. "Phase Formation in NaH2PO4–VOSO4–NaF–H2O System and Rapid Synthesis of Na3V2O2x(PO4)2F3-2x". Crystals 14, n.º 1 (28 de dezembro de 2023): 43. http://dx.doi.org/10.3390/cryst14010043.

Texto completo da fonte
Resumo:
Renewable electricity products, for example, from wind and photovoltaic energy, need large-scale and economic energy storage systems to guarantee the requirements of our daily lives. Sodium-ion batteries are considered more economical than lithium-ion batteries in this area. Na3V2(PO4)2F3, NaVPO4F, and Na3(VO)2(PO4)2F are one type of material that may be used for Na-ion batteries. In order to better understand the synthesis of these materials, the phase formation in a NaH2PO4–VOSO4–NaF–H2O system under hydrothermal conditions was studied and is reported herein. This research focused on the influences of the sodium fluoride content and hydrothermal crystallization time on phase formation and phase purity. The phase transformation between Na(VO)2(PO4)2(H2O)4 and Na3V2O2x(PO4)2F3-2x was also studied. Na3V2O2x(PO4)2F3-2x with a high degree of crystallinity can be obtained in as short as 2 h via hydrothermal synthesis using a conventional oven at 170 °C without agitation. All compounds obtained in this research were studied mainly using powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, and Fourier-transform infrared spectroscopy.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Nguyen, Long H. B., Thibault Broux, Paula Sanz Camacho, Dominique Denux, Lydie Bourgeois, Stéphanie Belin, Antonella Iadecola et al. "Stability in water and electrochemical properties of the Na3V2(PO4)2F3 – Na3(VO)2(PO4)2F solid solution". Energy Storage Materials 20 (julho de 2019): 324–34. http://dx.doi.org/10.1016/j.ensm.2019.04.010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Yin, Yameng, Cunyuan Pei, Fangyu Xiong, Yi Pan, Xiaoming Xu, Bo Wen e Qinyou An. "Porous yolk-shell structured Na3(VO)2(PO4)2F microspheres with enhanced Na-ion storage properties". Journal of Materials Science & Technology 83 (agosto de 2021): 83–89. http://dx.doi.org/10.1016/j.jmst.2020.11.075.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Serras, Paula, Verónica Palomares, Pierre Kubiak, Luis Lezama e Teófilo Rojo. "Enhanced electrochemical performance of vanadyl (IV) Na3(VO)2(PO4)2F by ex-situ carbon coating". Electrochemistry Communications 34 (setembro de 2013): 344–47. http://dx.doi.org/10.1016/j.elecom.2013.07.010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Xing, Siyang, Yujuan Cheng, Fei Yu e Jie Ma. "Na3(VO)2(PO4)2F nanocuboids/graphene hybrid materials as faradic electrode for extra-high desalination capacity". Journal of Colloid and Interface Science 598 (setembro de 2021): 511–18. http://dx.doi.org/10.1016/j.jcis.2021.04.051.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Nguyen, Long H. B., Jacob Olchowka, Stéphanie Belin, Paula Sanz Camacho, Mathieu Duttine, Antonella Iadecola, François Fauth, Dany Carlier, Christian Masquelier e Laurence Croguennec. "Monitoring the Crystal Structure and the Electrochemical Properties of Na3(VO)2(PO4)2F through Fe3+ Substitution". ACS Applied Materials & Interfaces 11, n.º 42 (27 de setembro de 2019): 38808–18. http://dx.doi.org/10.1021/acsami.9b14249.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Deng, Gang, Dongliang Chao, Yuwei Guo, Zhen Chen, Huanhuan Wang, Serguei V. Savilov, Jianyi Lin e Ze Xiang Shen. "Graphene quantum dots-shielded Na3(VO)2(PO4)2F@C nanocuboids as robust cathode for Na-ion battery". Energy Storage Materials 5 (outubro de 2016): 198–204. http://dx.doi.org/10.1016/j.ensm.2016.07.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Bi, Xueli, Yaqi Peng, Shanshan Liu, Ye Liu, Xin Yang, Kai Feng e Jianjiang Hu. "Na3(VO)2(PO4)2F coated carbon nanotubes: A cathode material with high-specific capacity for aqueous zinc-ion batteries". Electrochimica Acta 475 (janeiro de 2024): 143657. http://dx.doi.org/10.1016/j.electacta.2023.143657.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Hu, Qiao, Guangming Han, Jiaying Liao e Jianfeng Yao. "Boosting sodium-ion battery performance using Na3(VO)2(PO4)2F microrods self-embedded in a 3D conductive interpenetrated framework". Journal of Alloys and Compounds 988 (junho de 2024): 174261. http://dx.doi.org/10.1016/j.jallcom.2024.174261.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Yang, Xiaoqiang, Meijing Wang, Xingde Xiang, Song Liu e Chunxia Chen. "An open-system synthesis approach to achieve high-rate Na3(VO)2(PO4)2F/C microcubes cathode for sodium-ion batteries". Journal of Electroanalytical Chemistry 956 (março de 2024): 118088. http://dx.doi.org/10.1016/j.jelechem.2024.118088.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Qiu, Ruyun, Rixin Fei, Jin-Zhi Guo, Rui Wang, Beibei He, Yansheng Gong, Xing-Long Wu e Huanwen Wang. "Encapsulation of Na3(VO)2(PO4)2F into carbon nanofiber as an superior cathode material for flexible sodium-ion capacitors with high-energy-density and low-self-discharge". Journal of Power Sources 466 (agosto de 2020): 228249. http://dx.doi.org/10.1016/j.jpowsour.2020.228249.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Xiang, Xingde, Qiongqiong Lu, Mo Han e Jun Chen. "Superior high-rate capability of Na3(VO0.5)2(PO4)2F2 nanoparticles embedded in porous graphene through the pseudocapacitive effect". Chemical Communications 52, n.º 18 (2016): 3653–56. http://dx.doi.org/10.1039/c6cc00065g.

Texto completo da fonte
Resumo:
Na3(VO0.5)2(PO4)2F2 nanoparticles embedded in porous graphene as the cathode material for sodium-ion batteries can show superior high-rate capability through the pseudocapacitive effect.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Morais, William Gomes de, Eduardo Carmine de Melo e Roberto Manuel M. Torresi. "Mechanochemical Effect on the Electrochemical Properties of Na3(VO)2(PO4)2F Positive Electrode for Sodium-Ion Batteries". Materials Advances, 2024. http://dx.doi.org/10.1039/d4ma00106k.

Texto completo da fonte
Resumo:
Sodium vanadium fluorophosphate (NVPF) has shown promising properties as a positive electrode in sodium-ion batteries, mainly due to its high operating voltage; however, it presents significant electronic and kinetic limitations...
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

"Preparation and Electrochemical Performance of Carbon Coated Na3(VO)2(PO4)2 F". ECS Meeting Abstracts, 2013. http://dx.doi.org/10.1149/ma2013-02/6/405.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Wei, Qiulong, Qidong Li, Yalong Jiang, Yunlong Zhao, Shuangshuang Tan, Jun Dong, Liqiang Mai e Dong-Liang Peng. "High-Energy and High-Power Pseudocapacitor–Battery Hybrid Sodium-Ion Capacitor with Na+ Intercalation Pseudocapacitance Anode". Nano-Micro Letters 13, n.º 1 (8 de janeiro de 2021). http://dx.doi.org/10.1007/s40820-020-00567-2.

Texto completo da fonte
Resumo:
AbstractHigh-performance and low-cost sodium-ion capacitors (SICs) show tremendous potential applications in public transport and grid energy storage. However, conventional SICs are limited by the low specific capacity, poor rate capability, and low initial coulombic efficiency (ICE) of anode materials. Herein, we report layered iron vanadate (Fe5V15O39 (OH)9·9H2O) ultrathin nanosheets with a thickness of ~ 2.2 nm (FeVO UNSs) as a novel anode for rapid and reversible sodium-ion storage. According to in situ synchrotron X-ray diffractions and electrochemical analysis, the storage mechanism of FeVO UNSs anode is Na+ intercalation pseudocapacitance under a safe potential window. The FeVO UNSs anode delivers high ICE (93.86%), high reversible capacity (292 mAh g−1), excellent cycling stability, and remarkable rate capability. Furthermore, a pseudocapacitor–battery hybrid SIC (PBH-SIC) consisting of pseudocapacitor-type FeVO UNSs anode and battery-type Na3(VO)2(PO4)2F cathode is assembled with the elimination of presodiation treatments. The PBH-SIC involves faradaic reaction on both cathode and anode materials, delivering a high energy density of 126 Wh kg−1 at 91 W kg−1, a high power density of 7.6 kW kg−1 with an energy density of 43 Wh kg−1, and 9000 stable cycles. The tunable vanadate materials with high-performance Na+ intercalation pseudocapacitance provide a direction for developing next-generation high-energy capacitors.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Wei, Qiulong, Qidong Li, Yalong Jiang, Yunlong Zhao, Shuangshuang Tan, Jun Dong, Liqiang Mai e Dong-Liang Peng. "High-Energy and High-Power Pseudocapacitor–Battery Hybrid Sodium-Ion Capacitor with Na+ Intercalation Pseudocapacitance Anode". Nano-Micro Letters 13, n.º 1 (janeiro de 2021). http://dx.doi.org/10.1007/s40820-020-00567-2.

Texto completo da fonte
Resumo:
AbstractHigh-performance and low-cost sodium-ion capacitors (SICs) show tremendous potential applications in public transport and grid energy storage. However, conventional SICs are limited by the low specific capacity, poor rate capability, and low initial coulombic efficiency (ICE) of anode materials. Herein, we report layered iron vanadate (Fe5V15O39 (OH)9·9H2O) ultrathin nanosheets with a thickness of ~ 2.2 nm (FeVO UNSs) as a novel anode for rapid and reversible sodium-ion storage. According to in situ synchrotron X-ray diffractions and electrochemical analysis, the storage mechanism of FeVO UNSs anode is Na+ intercalation pseudocapacitance under a safe potential window. The FeVO UNSs anode delivers high ICE (93.86%), high reversible capacity (292 mAh g−1), excellent cycling stability, and remarkable rate capability. Furthermore, a pseudocapacitor–battery hybrid SIC (PBH-SIC) consisting of pseudocapacitor-type FeVO UNSs anode and battery-type Na3(VO)2(PO4)2F cathode is assembled with the elimination of presodiation treatments. The PBH-SIC involves faradaic reaction on both cathode and anode materials, delivering a high energy density of 126 Wh kg−1 at 91 W kg−1, a high power density of 7.6 kW kg−1 with an energy density of 43 Wh kg−1, and 9000 stable cycles. The tunable vanadate materials with high-performance Na+ intercalation pseudocapacitance provide a direction for developing next-generation high-energy capacitors.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Yakubovich, Olga Vsevolodovna, Galina Kiriukhina, Sergey Vladimirovich Simonov, Anatoly Volkov e Olga Dimitrova. "Na3(VO)(PO4)(CO3): a synthetic member of the bradleyite phosphate carbonate family with a new type of crystal structure". CrystEngComm, 2023. http://dx.doi.org/10.1039/d3ce00323j.

Texto completo da fonte
Resumo:
The synthesis and characterization of a (VO)2+ representative in the bradleyite family of compounds is reported. The new trisodium vanadyl phosphate carbonate was investigated using scanning electron microscopy, microprobe analysis,...
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia