Artigos de revistas sobre o tema "Multivalent-Ion"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Multivalent-Ion".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Iton, Zachery W. B., e Kimberly A. See. "Multivalent Ion Conduction in Inorganic Solids". Chemistry of Materials 34, n.º 3 (27 de janeiro de 2022): 881–98. http://dx.doi.org/10.1021/acs.chemmater.1c04178.
Texto completo da fonteProffit, Danielle L., Albert L. Lipson, Baofei Pan, Sang-Don Han, Timothy T. Fister, Zhenxing Feng, Brian J. Ingram, Anthony K. Burrell e John T. Vaughey. "Reducing Side Reactions Using PF6-based Electrolytes in Multivalent Hybrid Cells". MRS Proceedings 1773 (2015): 27–32. http://dx.doi.org/10.1557/opl.2015.590.
Texto completo da fonteRutt, Ann, e Kristin A. Persson. "Expanding the Materials Search Space for Multivalent Cathodes". ECS Meeting Abstracts MA2022-02, n.º 4 (9 de outubro de 2022): 446. http://dx.doi.org/10.1149/ma2022-024446mtgabs.
Texto completo da fonteDong, Liubing, Wang Yang, Wu Yang, Yang Li, Wenjian Wu e Guoxiu Wang. "Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors". Journal of Materials Chemistry A 7, n.º 23 (2019): 13810–32. http://dx.doi.org/10.1039/c9ta02678a.
Texto completo da fonteHasnat, Abul, e Vinay A. Juvekar. "Dynamics of ion-exchange involving multivalent cations". Chemical Engineering Science 52, n.º 14 (julho de 1997): 2439–42. http://dx.doi.org/10.1016/s0009-2509(97)00047-x.
Texto completo da fonteKC, Bilash, Jinglong Guo, Robert Klie, D. Bruce Buchholz, Guennadi Evmenenko, Jae Jin Kim, Timothy Fister e Brian Ingram. "TEM Analysis of Multivalent Ion Battery Cathode". Microscopy and Microanalysis 26, S2 (30 de julho de 2020): 3170–72. http://dx.doi.org/10.1017/s1431927620024058.
Texto completo da fonteImanaka, Nobuhito, e Shinji Tamura. "Development of Multivalent Ion Conducting Solid Electrolytes". Bulletin of the Chemical Society of Japan 84, n.º 4 (15 de abril de 2011): 353–62. http://dx.doi.org/10.1246/bcsj.20100178.
Texto completo da fonteSchauser, Nicole S., Ram Seshadri e Rachel A. Segalman. "Multivalent ion conduction in solid polymer systems". Molecular Systems Design & Engineering 4, n.º 2 (2019): 263–79. http://dx.doi.org/10.1039/c8me00096d.
Texto completo da fonteLi, Zhong-Qiu, Yang Wang, Zeng-Qiang Wu, Ming-Yang Wu e Xing-Hua Xia. "Bioinspired Multivalent Ion Responsive Nanopore with Ultrahigh Ion Current Rectification". Journal of Physical Chemistry C 123, n.º 22 (13 de maio de 2019): 13687–92. http://dx.doi.org/10.1021/acs.jpcc.9b02279.
Texto completo da fonteGates, Leslie, e Niya Sa. "Investigation of Suitability of Electrolytes in a Trivalent System". ECS Meeting Abstracts MA2023-01, n.º 1 (28 de agosto de 2023): 425. http://dx.doi.org/10.1149/ma2023-011425mtgabs.
Texto completo da fonteKim, Chaewon, Useul Hwang, Sangjin Lee e Young-Kyu Han. "First-Principles Dynamics Investigation of Germanium as an Anode Material in Multivalent-Ion Batteries". Nanomaterials 13, n.º 21 (30 de outubro de 2023): 2868. http://dx.doi.org/10.3390/nano13212868.
Texto completo da fonteIslam, Shakirul M., Ryan J. Malone, Wenlong Yang, Stephen P. George, Rajendra P. Gautam, Wesley A. Chalifoux e Christopher J. Barile. "Nanographene Cathode Materials for Nonaqueous Zn-Ion Batteries". Journal of The Electrochemical Society 169, n.º 11 (1 de novembro de 2022): 110517. http://dx.doi.org/10.1149/1945-7111/ac9f72.
Texto completo da fonteWang, Bangda, Natsume Koike, Kenta Iyoki, Watcharop Chaikittisilp, Yi Wang, Toru Wakihara e Tatsuya Okubo. "Insights into the ion-exchange properties of Zn(ii)-incorporated MOR zeolites for the capture of multivalent cations". Physical Chemistry Chemical Physics 21, n.º 7 (2019): 4015–21. http://dx.doi.org/10.1039/c8cp06975a.
Texto completo da fonteLiu, Yiyang, Guanjie He, Hao Jiang, Ivan P. Parkin, Paul R. Shearing e Dan J. L. Brett. "Multivalent Ion Batteries: Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities (Adv. Funct. Mater. 13/2021)". Advanced Functional Materials 31, n.º 13 (março de 2021): 2170089. http://dx.doi.org/10.1002/adfm.202170089.
Texto completo da fonteBesha, Abreham Tesfaye, Misgina Tilahun Tsehaye, David Aili, Wenjuan Zhang e Ramato Ashu Tufa. "Design of Monovalent Ion Selective Membranes for Reducing the Impacts of Multivalent Ions in Reverse Electrodialysis". Membranes 10, n.º 1 (31 de dezembro de 2019): 7. http://dx.doi.org/10.3390/membranes10010007.
Texto completo da fonteJing, Benxin, Jie Qiu e Yingxi Zhu. "Organic–inorganic macroion coacervate complexation". Soft Matter 13, n.º 28 (2017): 4881–89. http://dx.doi.org/10.1039/c7sm00955k.
Texto completo da fonteMa, Xinpei, Junye Cheng, Liubing Dong, Wenbao Liu, Jian Mou, Ling Zhao, Jinjie Wang et al. "Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors". Energy Storage Materials 20 (julho de 2019): 335–42. http://dx.doi.org/10.1016/j.ensm.2018.10.020.
Texto completo da fonteLi, Matthew, Jun Lu, Xiulei Ji, Yanguang Li, Yuyan Shao, Zhongwei Chen, Cheng Zhong e Khalil Amine. "Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes". Nature Reviews Materials 5, n.º 4 (10 de fevereiro de 2020): 276–94. http://dx.doi.org/10.1038/s41578-019-0166-4.
Texto completo da fonteNaughton, Elise M., Mingqiang Zhang, Diego Troya, Karen J. Brewer e Robert B. Moore. "Size dependent ion-exchange of large mixed-metal complexes into Nafion® membranes". Polymer Chemistry 6, n.º 38 (2015): 6870–79. http://dx.doi.org/10.1039/c5py00714c.
Texto completo da fonteKim, Kwangnam, e Donald J. Siegel. "Multivalent Ion Transport in Anti-Perovskite Solid Electrolytes". Chemistry of Materials 33, n.º 6 (8 de março de 2021): 2187–97. http://dx.doi.org/10.1021/acs.chemmater.1c00096.
Texto completo da fonteLiu, Chaofeng. "Aqueous Multivalent Ion Batteries Built on Hydrated Vanadates". ECS Meeting Abstracts MA2020-01, n.º 2 (1 de maio de 2020): 226. http://dx.doi.org/10.1149/ma2020-012226mtgabs.
Texto completo da fontePark, Min Je, Hooman Yaghoobnejad Asl e Arumugam Manthiram. "Multivalent-Ion versus Proton Insertion into Battery Electrodes". ACS Energy Letters 5, n.º 7 (26 de junho de 2020): 2367–75. http://dx.doi.org/10.1021/acsenergylett.0c01021.
Texto completo da fonteQuinn, J. F., e F. Caruso. "Multivalent-Ion-Mediated Stabilization of Hydrogen-Bonded Multilayers". Advanced Functional Materials 16, n.º 9 (6 de junho de 2006): 1179–86. http://dx.doi.org/10.1002/adfm.200500530.
Texto completo da fonteWang, Chunlei, Zibing Pan, Huaqi Chen, Xiangjun Pu e Zhongxue Chen. "MXene-Based Materials for Multivalent Metal-Ion Batteries". Batteries 9, n.º 3 (17 de março de 2023): 174. http://dx.doi.org/10.3390/batteries9030174.
Texto completo da fonteDai, Fangfang, Risheng Yu, Ruobing Yi, Jian Lan, Rujie Yang, Zhikun Wang, Junlang Chen e Liang Chen. "Ultrahigh water permeance of a reduced graphene oxide nanofiltration membrane for multivalent metal ion rejection". Chemical Communications 56, n.º 95 (2020): 15068–71. http://dx.doi.org/10.1039/d0cc06302a.
Texto completo da fonteSrivastava, Sunita, Anuj Chhabra e Oleg Gang. "Effect of mono- and multi-valent ionic environments on the in-lattice nanoparticle-grafted single-stranded DNA". Soft Matter 18, n.º 3 (2022): 526–34. http://dx.doi.org/10.1039/d1sm01171e.
Texto completo da fontePark, Haesun, e Peter Zapol. "Thermodynamic and kinetic properties of layered-CaCo2O4 for the Ca-ion batteries: a systematic first-principles study". Journal of Materials Chemistry A 8, n.º 41 (2020): 21700–21710. http://dx.doi.org/10.1039/d0ta07573f.
Texto completo da fonteDai, Fangfang, Feng Zhou, Junlang Chen, Shanshan Liang, Liang Chen e Haiping Fang. "Ultrahigh water permeation with a high multivalent metal ion rejection rate through graphene oxide membranes". Journal of Materials Chemistry A 9, n.º 17 (2021): 10672–77. http://dx.doi.org/10.1039/d1ta00647a.
Texto completo da fonteYao, Long, Shunlong Ju e Xuebin Yu. "Rational surface engineering of MXene@N-doped hollow carbon dual-confined cobalt sulfides/selenides for advanced aluminum batteries". Journal of Materials Chemistry A 9, n.º 31 (2021): 16878–88. http://dx.doi.org/10.1039/d1ta03465k.
Texto completo da fonteZhang, Jiaxu, Xiang Wang, Jing Lv, Dong-Sheng Li e Tao Wu. "A multivalent mixed-metal strategy for single-Cu+-ion-bridged cluster-based chalcogenide open frameworks for sensitive nonenzymatic detection of glucose". Chemical Communications 55, n.º 45 (2019): 6357–60. http://dx.doi.org/10.1039/c9cc02905b.
Texto completo da fonteChen, Mei, Jinxing Ma, Zhiwei Wang, Xingran Zhang e Zhichao Wu. "Insights into iron induced fouling of ion-exchange membranes revealed by a quartz crystal microbalance with dissipation monitoring". RSC Advances 7, n.º 58 (2017): 36555–61. http://dx.doi.org/10.1039/c7ra05510b.
Texto completo da fonteLiu, Yi, e Rudolf Holze. "Metal-Ion Batteries". Encyclopedia 2, n.º 3 (15 de setembro de 2022): 1611–23. http://dx.doi.org/10.3390/encyclopedia2030110.
Texto completo da fonteMa, Lin, Marshall Schroeder, Glenn Pastel, Oleg Borodin, Travis Pollard, Michael Ding, Janet Ho, Arthur v. Cresce e Kang Xu. "(Invited) Promises and Challenges of Multivalent Ion Battery Chemistries". ECS Meeting Abstracts MA2022-02, n.º 5 (9 de outubro de 2022): 552. http://dx.doi.org/10.1149/ma2022-025552mtgabs.
Texto completo da fonteLiu, Zhexuan, Liping Qin, Xinxin Cao, Jiang Zhou, Anqiang Pan, Guozhao Fang, Shuangyin Wang e Shuquan Liang. "Ion migration and defect effect of electrode materials in multivalent-ion batteries". Progress in Materials Science 125 (abril de 2022): 100911. http://dx.doi.org/10.1016/j.pmatsci.2021.100911.
Texto completo da fonteKarapidakis, Emmanuel, e Dimitra Vernardou. "Progress on V2O5 Cathodes for Multivalent Aqueous Batteries". Materials 14, n.º 9 (29 de abril de 2021): 2310. http://dx.doi.org/10.3390/ma14092310.
Texto completo da fonteSchroeder, Marshall A., Lin Ma, Glenn Pastel e Kang Xu. "The mystery and promise of multivalent metal-ion batteries". Current Opinion in Electrochemistry 29 (outubro de 2021): 100819. http://dx.doi.org/10.1016/j.coelec.2021.100819.
Texto completo da fontePan, Zhenghui, Ximeng Liu, Jie Yang, Xin Li, Zhaolin Liu, Xian Jun Loh e John Wang. "Aqueous Rechargeable Multivalent Metal‐Ion Batteries: Advances and Challenges". Advanced Energy Materials 11, n.º 24 (12 de maio de 2021): 2100608. http://dx.doi.org/10.1002/aenm.202100608.
Texto completo da fonteZhang, Zihe, Xu Zhang, Xudong Zhao, Sai Yao, An Chen e Zhen Zhou. "Computational Screening of Layered Materials for Multivalent Ion Batteries". ACS Omega 4, n.º 4 (30 de abril de 2019): 7822–28. http://dx.doi.org/10.1021/acsomega.9b00482.
Texto completo da fonteKirbawy, S. Alvin, e Marquita K. Hill. "Multivalent ion removal from kraft black liquor by ultrafiltration". Industrial & Engineering Chemistry Research 26, n.º 9 (setembro de 1987): 1851–54. http://dx.doi.org/10.1021/ie00069a022.
Texto completo da fonteHübsch, E., G. Fleith, J. Fatisson, P. Labbé, J. C. Voegel, P. Schaaf e V. Ball. "Multivalent Ion/Polyelectrolyte Exchange Processes in Exponentially Growing Multilayers". Langmuir 21, n.º 8 (abril de 2005): 3664–69. http://dx.doi.org/10.1021/la047258d.
Texto completo da fonteJohnson, Ian D., Aashutosh Mistry, Liang Yin, Megan Murphy, Saul H. Lapidus, Venkat Srinivasan, John T. Vaughey, Jordi Cabana e Brian J. Ingram. "Ion Transport in Chromite Spinels for Multivalent Battery Applications". ECS Meeting Abstracts MA2020-02, n.º 2 (23 de novembro de 2020): 315. http://dx.doi.org/10.1149/ma2020-022315mtgabs.
Texto completo da fonteMcPhee, Brian D. "Apollo, Dionysus, and the Multivalent Birds of Euripides’ Ion". Classical World 110, n.º 4 (2017): 475–89. http://dx.doi.org/10.1353/clw.2017.0039.
Texto completo da fonteLi, Yuqi, Yaxiang Lu, Philipp Adelhelm, Maria-Magdalena Titirici e Yong-Sheng Hu. "Intercalation chemistry of graphite: alkali metal ions and beyond". Chemical Society Reviews 48, n.º 17 (2019): 4655–87. http://dx.doi.org/10.1039/c9cs00162j.
Texto completo da fonteHao, Qing-Hai, Qian Chen, Zhen Zheng, Li-Yan Liu, Tie-Ju Liu, Xiao-Hui Niu, Qing-Gong Song e Hong-Ge Tan. "Molecular dynamics simulations of cylindrical polyelectrolyte brushes in monovalent and multivalent salt solutions". Journal of Theoretical and Computational Chemistry 15, n.º 03 (maio de 2016): 1650026. http://dx.doi.org/10.1142/s0219633616500267.
Texto completo da fonteGao, Qiang, Jeremy Come, Michael Naguib, Stephen Jesse, Yury Gogotsi e Nina Balke. "Synergetic effects of K+and Mg2+ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti3C2MXene". Faraday Discussions 199 (2017): 393–403. http://dx.doi.org/10.1039/c6fd00251j.
Texto completo da fonteLi, Le, Weizhuo Zhang, Weijie Pan, Mengyu Wang, Hairan Zhang, Duo Zhang e Dan Zhang. "Application of expanded graphite-based materials for rechargeable batteries beyond lithium-ions". Nanoscale 13, n.º 46 (2021): 19291–305. http://dx.doi.org/10.1039/d1nr05873h.
Texto completo da fonteStadie, Nicholas P. "(Invited) Zeolite-Templated Carbon As a Model Material for Electrochemical Energy Storage in Nanometre-Spaced Carbon Channels". ECS Meeting Abstracts MA2022-01, n.º 7 (7 de julho de 2022): 659. http://dx.doi.org/10.1149/ma2022-017659mtgabs.
Texto completo da fonteAsselin, Genevieve, Olivia Paden, Weiqi Qiu, Zicheng Yang e Niya Sa. "Electrochemical Investigation of Kinetics and Mechanisms of Charge Transfer in Nonaqueous Zinc and Magnesium Electrolytes". ECS Meeting Abstracts MA2022-02, n.º 4 (9 de outubro de 2022): 512. http://dx.doi.org/10.1149/ma2022-024512mtgabs.
Texto completo da fonteGulden, Tobias, e Alex Kamenev. "Dynamics of Ion Channels via Non-Hermitian Quantum Mechanics". Entropy 23, n.º 1 (19 de janeiro de 2021): 125. http://dx.doi.org/10.3390/e23010125.
Texto completo da fonteBui, Hoang Linh, e Chun-Jen Huang. "Tough Polyelectrolyte Hydrogels with Antimicrobial Property via Incorporation of Natural Multivalent Phytic Acid". Polymers 11, n.º 10 (21 de outubro de 2019): 1721. http://dx.doi.org/10.3390/polym11101721.
Texto completo da fonte