Literatura científica selecionada sobre o tema "Multiscale deformations"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Multiscale deformations".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Multiscale deformations"
Shahi, Shahrokh, e Soheil Mohammadi. "A Multiscale Finite Element Simulation of Human Aortic Heart Valve". Applied Mechanics and Materials 367 (agosto de 2013): 275–79. http://dx.doi.org/10.4028/www.scientific.net/amm.367.275.
Texto completo da fonteLI, ZHIPING. "MULTISCALE MODELLING AND COMPUTATION OF MICROSTRUCTURES IN MULTI-WELL PROBLEMS". Mathematical Models and Methods in Applied Sciences 14, n.º 09 (setembro de 2004): 1343–60. http://dx.doi.org/10.1142/s0218202504003647.
Texto completo da fonteBrozzetti, Francesco, Alessandro Cesare Mondini, Cristina Pauselli, Paolo Mancinelli, Daniele Cirillo, Fausto Guzzetti e Giusy Lavecchia. "Mainshock Anticipated by Intra-Sequence Ground Deformations: Insights from Multiscale Field and SAR Interferometric Measurements". Geosciences 10, n.º 5 (15 de maio de 2020): 186. http://dx.doi.org/10.3390/geosciences10050186.
Texto completo da fonteEfendiev, Yalchin, Juan Galvis e M. Sebastian Pauletti. "Multiscale Finite Element Methods for Flows on Rough Surfaces". Communications in Computational Physics 14, n.º 4 (outubro de 2013): 979–1000. http://dx.doi.org/10.4208/cicp.170512.310113a.
Texto completo da fonteZewail, Rami, e Ahmed Hag-ElSafi. "MULTISCALE SPARSE APPEARANCE MODELING AND SIMULATION OF PATHOLOGICAL DEFORMATIONS". ICTACT Journal on Image and Video Processing 8, n.º 1 (1 de agosto de 2017): 1596–605. http://dx.doi.org/10.21917/ijivp.2017.0225.
Texto completo da fonteGrondin, F., M. Bouasker, P. Mounanga, A. Khelidj e A. Perronnet. "Physico-chemical deformations of solidifying cementitious systems: multiscale modelling". Materials and Structures 43, n.º 1-2 (5 de fevereiro de 2009): 151–65. http://dx.doi.org/10.1617/s11527-009-9477-z.
Texto completo da fonteBakhaty, Ahmed A., Sanjay Govindjee e Mohammad R. K. Mofrad. "A Coupled Multiscale Approach to Modeling Aortic Valve Mechanics in Health and Disease". Applied Sciences 11, n.º 18 (8 de setembro de 2021): 8332. http://dx.doi.org/10.3390/app11188332.
Texto completo da fonteKarmarkar, Aditya P., Xiaopeng Xu e Karim El-Sayed. "Temperature and Process Dependent Material Characterization and Multiscale Stress Evolution Analysis for Performance and Reliability Management under Chip Package Interaction". International Symposium on Microelectronics 2017, n.º 1 (1 de outubro de 2017): 000013–24. http://dx.doi.org/10.4071/isom-2017-tp13_051.
Texto completo da fonteZhou, Tingtao, Katerina Ioannidou, Franz-Josef Ulm, Martin Z. Bazant e R. J. M. Pellenq. "Multiscale poromechanics of wet cement paste". Proceedings of the National Academy of Sciences 116, n.º 22 (9 de maio de 2019): 10652–57. http://dx.doi.org/10.1073/pnas.1901160116.
Texto completo da fonteSotiropoulos, Gerasimos, e Vissarion Papadopoulos. "Nonlinear multiscale modeling of thin composite shells at finite deformations". Computer Methods in Applied Mechanics and Engineering 391 (março de 2022): 114572. http://dx.doi.org/10.1016/j.cma.2022.114572.
Texto completo da fonteTeses / dissertações sobre o assunto "Multiscale deformations"
Song, Jin E. "Hierarchical multiscale modeling of Ni-base superalloys". Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34855.
Texto completo da fonteShepherd, James Ellison. "Multiscale Modeling of the Deformation of Semi-Crystalline Polymers". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10479.
Texto completo da fonteShehadeh, Mu'Tasem A. "Modeling of high strain rate and strain localization in FCC single crystals multiscale dislocation dynamics analyses /". Online access for everyone, 2005. http://www.dissertations.wsu.edu/Dissertations/Spring2005/M%5FShehadeh%5F050405.pdf.
Texto completo da fonteAbou, Orm Lara. "VMS (Variational MultiScale) stabilization for Stokes-Darcy coupled flows in porous media undergoing finite deformations : application to infusion-based composite processing". Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2013. http://tel.archives-ouvertes.fr/tel-00966922.
Texto completo da fonteBrown, Stephen. "Analyse structurale et âge des déformations cassantes à micro- et méso-échelle dans un bassin sédimentaire intracontinental : le cas du Bassin de Paris". Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1325.
Texto completo da fonteThe intracontinental domain is located far from tectonic plate margins, where significant stress can accumulate. Deformation of the intraplate domain is a consequence of stress transmission from plate boundaries. It results in lithospheric buckling, regional deformations, and meso to microscale fracture networks. These intraplate deformations reflect the nature of stress regimes at continental plate boundaries. They often have a heterogeneous distribution, and on a regional scale, are frequently impacted by the directions of pre-existing faults or weaknesses. The role of a structural inheritance remains to be shown on a micro and mesoscale.Understanding intraplate deformation is crucial for assessing geological hazards and fluid circulation in the context of subsurface solicitation. This is especially true in densely populated areas with substantial underground infrastructure. In this PhD, we investigate the geometries, distribution, kinematics, and timing of these intraplate deformations within the intracontinental Paris Sedimentary Basin, with the city of Paris at its center.To achieve this and to attempt to link the different scales of structures, we use multiple techniques, combining fieldwork and laboratory work, in order to approach the problem from two different scales: the mesoscale (metric to centimetric) and microscale (centimetric to millimetric). The structural analyses include calculating paleostress fields from microtectonic data collected in the field and in-situ U-Pb absolute dating of synkinematic calcites and calcitic veins. The microscale is investigated through the inversion of magnetic susceptibility and P-wave velocity data to characterize the internal microstructures of rock samples.The data show that an extensive network of multi-directional brittle joints exists and is expressed at different scales. In chalk samples for example, the measured anisotropy of P-wave velocity reflects the directions of mesoscale joints measured in the field. When the applied shear stress exceeds the shear strength of the joint, failure occurs. This can manifest as sliding or fracturing along the joint plane. Thus, some of the joints are reactivated later. Evidences of faulting, while less common than joints, also exist in the Paris Basin. Calculated paleostress tensors indicate mostly strike-slip faulting regimes with maximal principal stress axes (sigma1) roughly N-S. This direction is concordant with the N-S orientation of Pyrenean compression more so than Alpine compression or Tertiary extension at the origin of the European rifted continental basins. Furthermore, through in-situ U-Pb dating of calcite mineralized along fault planes or within veins, we show that the Late Cretaceous to Eocene timing of the fault network is more aligned with the Pyrenean Orogeny than the Alpine Orogeny or the European Cenozoic Rift System (ECRIS)
Brödling, Nils. "Multiscale modeling of fracture and deformation in interface controlled materials". [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-36166.
Texto completo da fonteShashkov, Ivan. "Multiscale study of the intermittency of plastic deformation by acoustic emission method". Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0326/document.
Texto completo da fonteRecent studies of plastic deformation using high-resolution experimental techniques testify that deformation processes are often characterized by collective effects that emerge on a mesoscopic scale, intermediate between the scale of individual crystal defects and that of the macroscopic sample. In particular, the acoustic emission (AE) method reveals intermittency of plastic deformation in various experimental conditions, which is manifested by the property of scale invariance, a characteristic feature of self-organized phenomena. The objective of the dissertation was to study the inherent structure of AE for different mechanisms of plastic deformation, to examine its dependence on the strain rate and strain hardening of the material, and to understand the relationships between short time scales related to organization of defects and those relevant to the continuous approach of plasticity. The study was performed on AlMg and Mg-based alloys, the plastic deformation of which is accompanied by a strong acoustic activity and controlled by different physical mechanisms: the Portevin-Le Chatelier (PLC) effect in the first case and a combination of twinning and dislocation glide in the second case. Application of a technique of continuous AE recording ("data streaming") allowed proving that the apparent behavior, discrete or continuous, of AE accompanying the PLC effect depends on the time scale of observation and the physical parameters surveyed. However, unlike the traditional view, it appears that AE has an intermittent character during both stress serrations and macroscopically smooth flow. Using methods of the theory of nonlinear dynamical systems, such as the multifractal analysis, a tendency to a transition between the scale-invariant dynamics and the behaviors characterized by intrinsic scales was detected during work hardening. Finally, we proved that the power-law statistical distributions persist in wide ranges of variation of parameters conventionally used to individualize acoustic events. This result is of general importance because it applies to all avalanche-like processes emerging in dynamical systems
Wang, Ruoya. "Novel theoretical and experimental frameworks for multiscale quantification of arterial mechanics". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47718.
Texto completo da fonteBrödling, Nils [Verfasser]. "Multiscale modeling of fracture and deformation in interface controlled materials / vorgelegt von Nils C, Brödling". Stuttgart : Max-Planck-Inst. für Metallforschung, 2007. http://d-nb.info/995392145/34.
Texto completo da fonteThuramalla, Naveen. "MULTISCALE MODELING AND ANALYSIS OF FAILURE AND STABILITY DURING SUPERPLASTIC DEFORMATION -- UNDER DIFFERENT LOADING CONDITIONS". UKnowledge, 2004. http://uknowledge.uky.edu/gradschool_theses/323.
Texto completo da fonteLivros sobre o assunto "Multiscale deformations"
Piero, Gianpetro, e David R. Owen, eds. Multiscale Modeling in Continuum Mechanics and Structured Deformations. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-2770-4.
Texto completo da fonteFan, Jinghong. Multiscale analysis of deformation and failure of materials. Chichester, West Sussex: Wiley, 2011.
Encontre o texto completo da fonteChuang, T. J., e J. W. Rudnicki. Multiscale deformation and fracture in materials and structures: The James R. Rice 60th anniversary volume. New York: Kluwer Academic Publishers, 2002.
Encontre o texto completo da fonteEMMM-2007, (2007 Moscow Russia). Electron microscopy and multiscale modeling: Proceedings of the EMMM-2007 international conference, Moscow, Russia, 3-7 September 2007. [Melville, N.Y.]: American Institute of Physics, 2008.
Encontre o texto completo da fonteFan, Jinghong. Multiscale Analysis of Deformation and Failure of Materials. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470972281.
Texto completo da fonteChuang, T. J., e J. W. Rudnicki, eds. Multiscale Deformation and Fracture in Materials and Structures. Dordrecht: Kluwer Academic Publishers, 2002. http://dx.doi.org/10.1007/0-306-46952-9.
Texto completo da fontePasternak, Elena, e Arcady Dyskin, eds. Multiscale Processes of Instability, Deformation and Fracturing in Geomaterials. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-22213-9.
Texto completo da fonteJ, Chuang T., Rudnicki J. W e Rice J. R, eds. Multiscale deformation and fracture in materials and structures: The James R. Rice 60th anniversary volume. Dordrecht: Kluwer Academic Publishers, 2001.
Encontre o texto completo da fontePiero, Gianpetro Del, e Owen David R. Multiscale Modeling in Continuum Mechanics and Structured Deformations. Springer London, Limited, 2014.
Encontre o texto completo da fonteFan, Jinghong. Multiscale Analysis of Deformation and Failure of Materials. Wiley & Sons, Incorporated, John, 2011.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Multiscale deformations"
Niemunis, Andrzej, e Felipe Prada. "PARAELASTIC DEFORMATIONS IN HYPOPLASTICITY". In Multiscale and Multiphysics Processes in Geomechanics, 29–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19630-0_8.
Texto completo da fonteDeseri, L. "Crystalline Plasticity and Structured Deformations". In Multiscale Modeling in Continuum Mechanics and Structured Deformations, 203–30. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-2770-4_6.
Texto completo da fontePiero, Gianpietro. "Foundations of the Theory of Structured Deformations". In Multiscale Modeling in Continuum Mechanics and Structured Deformations, 125–75. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-2770-4_4.
Texto completo da fonteParoni, Roberto. "Second-Order Structured Deformations: Approximation Theorems and Energetics". In Multiscale Modeling in Continuum Mechanics and Structured Deformations, 177–202. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-2770-4_5.
Texto completo da fonteŠilhavý, M. "Energy Minimization for Isotropic Nonlinear Elastic Bodies". In Multiscale Modeling in Continuum Mechanics and Structured Deformations, 1–51. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-2770-4_1.
Texto completo da fonteLe, Khanh Chau. "Variational problems of crack equilibrium and crack propagation". In Multiscale Modeling in Continuum Mechanics and Structured Deformations, 53–81. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-2770-4_2.
Texto completo da fonteMarigo, Jean-Jacques. "Griffith Theory Revisited". In Multiscale Modeling in Continuum Mechanics and Structured Deformations, 83–123. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-2770-4_3.
Texto completo da fonteOwen, David R. "Elasticity with Disarrangements". In Multiscale Modeling in Continuum Mechanics and Structured Deformations, 231–75. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-2770-4_7.
Texto completo da fonteLevitas, Valery I. "Phase Transformations Under High Pressure and Large Plastic Deformations: Multiscale Theory and Interpretation of Experiments". In Proceedings of the International Conference on Martensitic Transformations: Chicago, 3–10. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76968-4_1.
Texto completo da fonteWang, Jielong. "Motion and Deformation". In Multiscale Multibody Dynamics, 59–97. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8441-9_2.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Multiscale deformations"
Lu, Jing. "Multiscale modeling of large deformations in 3-D polycrystals". In MATERIALS PROCESSING AND DESIGN: Modeling, Simulation and Applications - NUMIFORM 2004 - Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes. AIP, 2004. http://dx.doi.org/10.1063/1.1766791.
Texto completo da fonteTyumentsev, Alexander N., Anatoly S. Avilov, Sergei L. Dudarev e Laurence D. Marks. "Metal Microstructure After Large Plastic Deformations: Models and TEM Possibilities". In ELECTRON MICROSCOPY AND MULTISCALE MODELING- EMMM-2007: An International Conference. AIP, 2008. http://dx.doi.org/10.1063/1.2918113.
Texto completo da fonteManiatty, Antoinette, Karel Matous e Jing Lu. "Multiscale Modeling of Large Deformation Processes in Polycrystalline Metals". In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43634.
Texto completo da fonteSibole, Scott, e Ahmet Erdemir. "A Pipeline for High Throughput Post-Processing of Joint and Tissue Simulations for Estimation of Cell Level Deformations". In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53749.
Texto completo da fonteZhu, Qiang, Zhangli Peng e Robert J. Asaro. "Investigation of RBC Remodeling With a Multiscale Model". In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13121.
Texto completo da fonteWeinberg, Eli, e Mohammad Mofrad. "Multiscale Fluid-Structure Simulations of the Aortic Valve". In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176730.
Texto completo da fonteMaute, K., M. L. Dunn, R. Bischel, M. Howard e J. M. Pajot. "Multiscale Design of Vascular Plates". In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82203.
Texto completo da fonteWeinberg, Eli J., e Mohammad R. K. Mofrad. "Multiscale Simulations of the Healthy and Calcific Human Aortic Valve". In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192671.
Texto completo da fonteRossi, Paolo, Cristina Castagnetti, Stefano Cattini, Giorgio Di Loro, Francesca Grassi, Luigi Parente, Sara Righi, Luigi Rovati, Roberto Simonini e Alessandro Capra. "Monitoring of underwater animal forests: geometry and biometry". In 5th Joint International Symposium on Deformation Monitoring. Valencia: Editorial de la Universitat Politècnica de València, 2022. http://dx.doi.org/10.4995/jisdm2022.2022.13891.
Texto completo da fonteHalloran, Jason, Scott Sibole e Ahmet Erdemir. "Three Dimensional Cellular Loading and Average Microstructural Tissue Response Using Single and Three Cell Models". In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53663.
Texto completo da fonteRelatórios de organizações sobre o assunto "Multiscale deformations"
McDowell, David L. Evolving Multiscale Deformation and Damage in Polycrystals. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2003. http://dx.doi.org/10.21236/ada416378.
Texto completo da fonteShen, Yu-Lin, e Tariq Khraishi. A Framework for Multiscale Modeling of Deformation in Crystalline Solids. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2006. http://dx.doi.org/10.21236/ada444522.
Texto completo da fonteHou, Thomas, Yalchin Efendiev, Hamdi Tchelepi e Louis Durlofsky. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation. Office of Scientific and Technical Information (OSTI), maio de 2016. http://dx.doi.org/10.2172/1254120.
Texto completo da fonteTchelepi, Hamdi. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation. Office of Scientific and Technical Information (OSTI), novembro de 2014. http://dx.doi.org/10.2172/1164145.
Texto completo da fonteGhoniem, Nasr M. Multiscale Modeling of Deformation, Fracture and Failure of Fusion Materials and Structures Final Report. Office of Scientific and Technical Information (OSTI), novembro de 2017. http://dx.doi.org/10.2172/1415926.
Texto completo da fonteNasr M. Ghoniem e Nick Kioussis. Multiscale Modeling of the Deformation of Advanced Ferritic Steels for Generation IV Nuclear Energy. Office of Scientific and Technical Information (OSTI), abril de 2009. http://dx.doi.org/10.2172/953345.
Texto completo da fonteAndrade, José E., e John W. Rudnicki. Multiscale framework for predicting the coupling between deformation and fluid diffusion in porous rocks. Office of Scientific and Technical Information (OSTI), dezembro de 2012. http://dx.doi.org/10.2172/1057395.
Texto completo da fonteBuehler, Markus J. Differential Multiscale Modeling of Chemically Complex Materials under Heavy Deformation: Biological, Bioinspired and Synthetic Hierarchical Materials. Fort Belvoir, VA: Defense Technical Information Center, junho de 2010. http://dx.doi.org/10.21236/ada533318.
Texto completo da fonteSparks, Paul, Jesse Sherburn, William Heard e Brett Williams. Penetration modeling of ultra‐high performance concrete using multiscale meshfree methods. Engineer Research and Development Center (U.S.), setembro de 2021. http://dx.doi.org/10.21079/11681/41963.
Texto completo da fonteStanek, Christopher, Carlos Tome, Robert Montgomery e Wengfeng Liu. FY14.CASL.012, L2:MPO.P9.03 Demonstration of Atomistically-�informed Multiscale Zr Alloy Deformation Models in Peregrine for Normal and Accident Scenarios. Office of Scientific and Technical Information (OSTI), outubro de 2014. http://dx.doi.org/10.2172/1159210.
Texto completo da fonte