Literatura científica selecionada sobre o tema "Multiplication de matrices creuses"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Multiplication de matrices creuses".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Multiplication de matrices creuses"
Keles, Hasan. "Multiplication of Matrices". Indonesian Journal of Mathematics and Applications 2, n.º 1 (31 de março de 2024): 1–8. http://dx.doi.org/10.21776/ub.ijma.2024.002.01.1.
Texto completo da fonteRoesler, Friedrich. "Generalized Matrices". Canadian Journal of Mathematics 41, n.º 3 (1 de junho de 1989): 556–76. http://dx.doi.org/10.4153/cjm-1989-024-5.
Texto completo da fonteBair, J. "72.34 Multiplication by Diagonal Matrices". Mathematical Gazette 72, n.º 461 (outubro de 1988): 228. http://dx.doi.org/10.2307/3618262.
Texto completo da fonteSowa, Artur. "Factorizing matrices by Dirichlet multiplication". Linear Algebra and its Applications 438, n.º 5 (março de 2013): 2385–93. http://dx.doi.org/10.1016/j.laa.2012.09.021.
Texto completo da fonteCouncilman, Samuel. "Sharing Teaching Ideas: Bisymmetric Matrices: Some Elementary New Problems". Mathematics Teacher 82, n.º 8 (novembro de 1989): 622–23. http://dx.doi.org/10.5951/mt.82.8.0622.
Texto completo da fonteIgnatenko, M. V., e L. A. Yanovich. "On the theory of interpolation of functions on sets of matrices with the Hadamard multiplication". Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series 58, n.º 3 (12 de outubro de 2022): 263–79. http://dx.doi.org/10.29235/1561-2430-2022-58-3-263-279.
Texto completo da fonteAbobala, Mohammad. "On Refined Neutrosophic Matrices and Their Application in Refined Neutrosophic Algebraic Equations". Journal of Mathematics 2021 (13 de fevereiro de 2021): 1–5. http://dx.doi.org/10.1155/2021/5531093.
Texto completo da fonteWaterhouse, William C. "Circulant-style matrices closed under multiplication". Linear and Multilinear Algebra 18, n.º 3 (novembro de 1985): 197–206. http://dx.doi.org/10.1080/03081088508817686.
Texto completo da fonteTheeracheep, Siraphob, e Jaruloj Chongstitvatana. "Multiplication of medium-density matrices using TensorFlow on multicore CPUs". Tehnički glasnik 13, n.º 4 (11 de dezembro de 2019): 286–90. http://dx.doi.org/10.31803/tg-20191104183930.
Texto completo da fonteMangngiri, Itsar, Qonita Qurrota A’yun e Wasono Wasono. "AN ORDER-P TENSOR MULTIPLICATION WITH CIRCULANT STRUCTURE". BAREKENG: Jurnal Ilmu Matematika dan Terapan 17, n.º 4 (19 de dezembro de 2023): 2293–304. http://dx.doi.org/10.30598/barekengvol17iss4pp2293-2304.
Texto completo da fonteTeses / dissertações sobre o assunto "Multiplication de matrices creuses"
Gonon, Antoine. "Harnessing symmetries for modern deep learning challenges : a path-lifting perspective". Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0043.
Texto completo da fonteNeural networks have demonstrated impressive practical success, but theoretical tools for analyzing them are often limited to simple cases that do not capture the complexity of real-world applications. This thesis seeks to narrow this gap by making theoretical tools more applicable to practical scenarios.The first focus of this work is on generalization: can a given network perform well on previously unseen data? This thesis improves generalization guarantees based on the path-norm and extends their applicability to ReLU networks incorporating pooling or skip connections. By reducing the gap between theoretically analyzable networks and those used in practice, this work provides the first empirical evaluation of these guarantees on practical ReLU networks, such as ResNets.The second focus is on resource optimization (time, energy, memory). This thesis introduces a novel pruning method based on the path-norm, which not only retains the accuracy of traditional magnitude pruning but also exhibits robustness to parameter symmetries. Additionally, this work presents a new GPU matrix multiplication algorithm that enhances the state-of-the-art for sparse matrices with Kronecker-structured support, achieving gains in both time and energy. Finally, this thesis makes approximation guarantees for neural networks more concrete by establishing sufficient bit-precision conditions to ensure that quantized networks maintain the same approximation speed as their unconstrained real-weight counterparts
Lawson, Jean-Christophe. "Smart : un neurocalculateur parallèle exploitant des matrices creuses". Grenoble INPG, 1993. http://www.theses.fr/1993INPG0030.
Texto completo da fonteGeronimi, Sylvain. "Determination d'ensembles essentiels minimaux dans les matrices creuses : application a l'analyse des circuits". Toulouse 3, 1987. http://www.theses.fr/1987TOU30104.
Texto completo da fonteVömel, Christof. "Contributions à la recherche en calcul scientifique haute performance pour les matrices creuses". Toulouse, INPT, 2003. http://www.theses.fr/2003INPT003H.
Texto completo da fonteGrigori, Laura. "Prédiction de structure et algorithmique parallèle pour la factorisation LU des matrices creuses". Nancy 1, 2001. http://www.theses.fr/2001NAN10264.
Texto completo da fonteThis dissertation treats of parallel numerical computing considering the Gaussian elimination, as it is used to solve large sparse nonsymmetric linear systems. Usually, computations on sparse matrices have an initial phase that predicts the nonzero structure of the output, which helps with memory allocations, set up data structures and schedule parallel tasks prior to the numerical computation itself. To this end, we study the structure prediction for the sparse LU factorization with partial pivoting. We are mainly interested to identify upper bounds as tight as possible to these structures. This structure prediction is then used in a phase called symbolic factorization, followed by a phase that performs the numerical computation of the factors, called numerical factorization. For very large matrices, a significant part of the overall memory space is needed by structures used during the symbolic factorization, and this can prevent a swap-free execution of the LU factorization. We propose and study a parallel algorithm to decrease the memory requirements of the nonsymmetric symbolic factorization. For an efficient parallel execution of the numerical factorization, we consider the analysis and the handling of the data dependencies graphs resulting from the processing of sparse matrices. This analysis enables us to develop scalable algorithms, which manage memory and computing resources in an effective way
Geronimi, Sylvain. "Détermination d'ensembles essentiels minimaux dans les matrices creuses application à l'analyse des circuits /". Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb376053608.
Texto completo da fontePuglisi, Chiara. "Factorisation QR de grandes matrices creuses basée sur une méthode multifrontale dans un environnement multiprocesseur". Toulouse, INPT, 1993. http://www.theses.fr/1993INPT091H.
Texto completo da fonteEDJLALI, GUY. "Contribution a la parallelisation de methodes iteratives hybrides pour matrices creuses sur architectures heterogenes". Paris 6, 1994. http://www.theses.fr/1994PA066360.
Texto completo da fonteBrown, Christopher Ian. "A VLSI device for multiplication of high order sparse matrices". Thesis, University of Sheffield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265915.
Texto completo da fonteGuermouche, Abdou. "Étude et optimisation du comportement mémoire dans les méthodes parallèles de factorisation de matrices creuses". Lyon, École normale supérieure (sciences), 2004. http://www.theses.fr/2004ENSL0284.
Texto completo da fonteDirect methods for solving sparse linear systems are known for their large memory requirements that can represent the limiting factor to solve large systems. The work done during this thesis concerns the study and the optimization of the memory behaviour of a sparse direct method, the multifrontal method, for both the sequential and the parallel cases. Thus, optimal memory minimization algorithms have been proposed for the sequential case. Concerning the parallel case, we have introduced new scheduling strategies aiming at improving the memory behaviour of the method. After that, we extended these approaches to have a good performance while keeping a good memory behaviour. In addition, in the case where the data to be treated cannot fit into memory, out-of-core factorization schemes have to be designed. To be efficient, such approaches require to overlap I/O operations with computations and to reuse the data sets already in memory to reduce the amount of I/O operations. Therefore, another part of the work presented in this thesis concerns the design and the study of implicit out-of-core techniques well-adapted to the memory access pattern of the multifrontal method. These techniques are based on a modification of the standard paging policies of the operating system using a low-level tool (MMUM&MMUSSEL)
Livros sobre o assunto "Multiplication de matrices creuses"
United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., ed. An efficient sparse matrix multiplication scheme for the CYBER 205 computer. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Encontre o texto completo da fonteMunerman, Viktor, Vadim Borisov e Aleksandra Kononova. Mass data processing. Algebraic models and methods. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/1906037.
Texto completo da fonteGohberg, Israel, Yuli Eidelman e Iulian Haimovici. Separable Type Representations of Matrices and Fast Algorithms: Volume 1 Basics. Completion Problems. Multiplication and Inversion Algorithms. Birkhauser Verlag, 2013.
Encontre o texto completo da fonteMann, Peter. The (Not So?) Basics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0030.
Texto completo da fonteCapítulos de livros sobre o assunto "Multiplication de matrices creuses"
Eidelman, Yuli, Israel Gohberg e Iulian Haimovici. "Multiplication of Matrices". In Separable Type Representations of Matrices and Fast Algorithms, 309–26. Basel: Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0606-0_17.
Texto completo da fonteJosipović, Miroslav. "Geometric Algebra and Matrices". In Geometric Multiplication of Vectors, 141–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01756-9_4.
Texto completo da fonteRusso, Luís M. S. "Multiplication Algorithms for Monge Matrices". In String Processing and Information Retrieval, 94–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16321-0_9.
Texto completo da fonteTiskin, A. "Bulk-synchronous parallel multiplication of boolean matrices". In Automata, Languages and Programming, 494–506. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0055078.
Texto completo da fonteTiskin, A. "Erratum: Bulk-Synchronous Parallel Multiplication of Boolean Matrices". In Automata, Languages and Programming, 717–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48523-6_68.
Texto completo da fonteÇatalyürek, Ümit V., e Cevdet Aykanat. "Decomposing irregularly sparse matrices for parallel matrix-vector multiplication". In Parallel Algorithms for Irregularly Structured Problems, 75–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0030098.
Texto completo da fonteGhosh, Koustabh, Jonathan Fuchs, Parisa Amiri Eliasi e Joan Daemen. "Universal Hashing Based on Field Multiplication and (Near-)MDS Matrices". In Progress in Cryptology - AFRICACRYPT 2023, 129–50. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37679-5_6.
Texto completo da fonteBeierle, Christof, Thorsten Kranz e Gregor Leander. "Lightweight Multiplication in $$GF(2^n)$$ with Applications to MDS Matrices". In Advances in Cryptology – CRYPTO 2016, 625–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-53018-4_23.
Texto completo da fonteRen, Da Qi, e Reiji Suda. "Modeling and Optimizing the Power Performance of Large Matrices Multiplication on Multi-core and GPU Platform with CUDA". In Parallel Processing and Applied Mathematics, 421–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14390-8_44.
Texto completo da fonteStitt, Timothy, N. Stan Scott, M. Penny Scott e Phil G. Burke. "2-D R-Matrix Propagation: A Large Scale Electron Scattering Simulation Dominated by the Multiplication of Dynamically Changing Matrices". In Lecture Notes in Computer Science, 354–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36569-9_23.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Multiplication de matrices creuses"
Ikeda, Kohei, Mitsumasa Nakajima, Shota Kita, Akihiko Shinya, Masaya Notomi e Toshikazu Hashimoto. "High-Fidelity WDM-Compatible Photonic Processor for Matrix-Matrix Multiplication". In CLEO: Applications and Technology, JTh2A.87. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jth2a.87.
Texto completo da fonteLiang, Tianyu, Riley Murray, Aydın Buluç e James Demmel. "Fast multiplication of random dense matrices with sparse matrices". In 2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2024. http://dx.doi.org/10.1109/ipdps57955.2024.00014.
Texto completo da fonteQian, Qiuming. "Optical full-parallel three matrices multiplication". In International Conference on Optoelectronic Science and Engineering '90. SPIE, 2017. http://dx.doi.org/10.1117/12.2294902.
Texto completo da fonteTiskin, Alexander. "Fast distance multiplication of unit-Monge matrices". In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2010. http://dx.doi.org/10.1137/1.9781611973075.103.
Texto completo da fonteGlushan, V. M., e Lozovoy A. Yu. "On Distributed Multiplication of Large-Scale Matrices". In 2021 IEEE 15th International Conference on Application of Information and Communication Technologies (AICT). IEEE, 2021. http://dx.doi.org/10.1109/aict52784.2021.9620434.
Texto completo da fonteAustin, Brian, Eric Roman e Xiaoye Li. "Resilient Matrix Multiplication of Hierarchical Semi-Separable Matrices". In HPDC'15: The 24th International Symposium on High-Performance Parallel and Distributed Computing. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2751504.2751507.
Texto completo da fonteRamamoorthy, Aditya, Li Tang e Pascal O. Vontobel. "Universally Decodable Matrices for Distributed Matrix-Vector Multiplication". In 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019. http://dx.doi.org/10.1109/isit.2019.8849451.
Texto completo da fonteBuluc, Aydin, e John R. Gilbert. "On the representation and multiplication of hypersparse matrices". In Distributed Processing Symposium (IPDPS). IEEE, 2008. http://dx.doi.org/10.1109/ipdps.2008.4536313.
Texto completo da fonteBallard, Grey, Aydin Buluc, James Demmel, Laura Grigori, Benjamin Lipshitz, Oded Schwartz e Sivan Toledo. "Communication optimal parallel multiplication of sparse random matrices". In SPAA '13: 25th ACM Symposium on Parallelism in Algorithms and Architectures. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2486159.2486196.
Texto completo da fonteLabini, Paolo Sylos, Massimo Bernaschi, Werner Nutt, Francesco Silvestri e Flavio Vella. "Blocking Sparse Matrices to Leverage Dense-Specific Multiplication". In 2022 IEEE/ACM Workshop on Irregular Applications: Architectures and Algorithms (IA3). IEEE, 2022. http://dx.doi.org/10.1109/ia356718.2022.00009.
Texto completo da fonteRelatórios de organizações sobre o assunto "Multiplication de matrices creuses"
Ballard, Grey, Aydin Buluc, James Demmel, Laura Grigori, Benjamin Lipshitz, Oded Schwartz e Sivan Toledo. Communication Optimal Parallel Multiplication of Sparse Random Matrices. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2013. http://dx.doi.org/10.21236/ada580140.
Texto completo da fonte