Artigos de revistas sobre o tema "Multiple model adaptive control"

Siga este link para ver outros tipos de publicações sobre o tema: Multiple model adaptive control.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Multiple model adaptive control".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Kuipers, Matthew, e Petros Ioannou. "Multiple Model Adaptive Control With Mixing". IEEE Transactions on Automatic Control 55, n.º 8 (agosto de 2010): 1822–36. http://dx.doi.org/10.1109/tac.2010.2042345.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Yang, Xinhao, e Ze Li. "Congestion Control Based on Multiple Model Adaptive Control". Mathematical Problems in Engineering 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/714320.

Texto completo da fonte
Resumo:
The congestion controller based on the multiple model adaptive control is designed for the network congestion in TCP/AQM network. As the conventional congestion control is sensitive to the variable network condition, the adaptive control method is adopted in our congestion control. The multiple model adaptive control is introduced in this paper based on the weight calculation instead of the parameter estimation in past adaptive control. The model set is composed by the dynamic model based on the fluid flow. And three “local” congestion controllers are nonlinear output feedback controller based on variable RTT, H2output feedback controller, and proportional-integral controller, respectively. Ns-2 simulation results in section 4 indicate that the proposed algorithm restrains the congestion in variable network condition and maintains a high throughput together with a low packet drop ratio.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Lourenco, J. M. A., e J. M. Lemos. "Learning in switching multiple model adaptive control". IEEE Instrumentation and Measurement Magazine 9, n.º 3 (junho de 2006): 24–29. http://dx.doi.org/10.1109/mim.2006.1637975.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kim, Youngchol, Sunwook Choi e Taeshin Cho. "Multiple model adaptive control for interval systems". IFAC Proceedings Volumes 32, n.º 2 (julho de 1999): 4699–704. http://dx.doi.org/10.1016/s1474-6670(17)56801-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Zhang, Yingzhao, Weicun Zhang, Xiao Wang e Handong Li. "Multiple Model Adaptive Control of Flexible Arm". Proceedings of International Conference on Artificial Life and Robotics 24 (10 de janeiro de 2019): 391–94. http://dx.doi.org/10.5954/icarob.2019.os14-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Nasr, Tamer Ahmed, Hossam A. Abdel Fattah e Adel A. R. Hanafy. "Multiple-model adaptive control for interval plants". International Journal of Control, Automation and Systems 10, n.º 1 (fevereiro de 2012): 11–19. http://dx.doi.org/10.1007/s12555-012-0102-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Anderson, Brian D. O., Thomas Brinsmead, Daniel Liberzon e A. Stephen Morse. "Multiple model adaptive control with safe switching". International Journal of Adaptive Control and Signal Processing 15, n.º 5 (2001): 445–70. http://dx.doi.org/10.1002/acs.684.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hespanha, Jo�o, Daniel Liberzon, A. Stephen Morse, Brian D. O. Anderson, Thomas S. Brinsmead e Franky De Bruyne. "Multiple model adaptive control. Part 2: switching". International Journal of Robust and Nonlinear Control 11, n.º 5 (2001): 479–96. http://dx.doi.org/10.1002/rnc.594.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Maybeck, P. S., e R. D. Stevens. "Reconfigurable flight control via multiple model adaptive control methods". IEEE Transactions on Aerospace and Electronic Systems 27, n.º 3 (maio de 1991): 470–80. http://dx.doi.org/10.1109/7.81428.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

He, W. G., Howard Kaufman e Rob Roy. "Multiple Model Adaptive Control Procedure for Blood Pressure Control". IEEE Transactions on Biomedical Engineering BME-33, n.º 1 (janeiro de 1986): 10–19. http://dx.doi.org/10.1109/tbme.1986.325833.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Wang, Kang, Xiaoli Li e Yang Li. "Multiple Model Adaptive Tracking Control Based on Adaptive Dynamic Programming". Discrete Dynamics in Nature and Society 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/6023892.

Texto completo da fonte
Resumo:
Adaptive dynamic programming (ADP) has been tested as an effective method for optimal control of nonlinear system. However, as the structure of ADP requires control input to satisfy the initial admissible control condition, the control performance may be deteriorated due to abrupt parameter change or system failure. In this paper, we introduce the multiple models idea into ADP, multiple subcontrollers run in parallel to supply multiple initial conditions for different environments, and a switching index is set up to decide the appropriate initial conditions for current system. By taking this strategy, the proposed multiple model ADP achieves optimal control for system with jumping parameters. The convergence of multiple model adaptive control based on ADP is proved and the simulation shows that the proposed method can improve the transient response of system effectively.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Hassani, Vahid, João Pedro Hespanha, Michael Athans e António M. Pascoal. "Stability Analysis of Robust Multiple Model Adaptive Control". IFAC Proceedings Volumes 44, n.º 1 (janeiro de 2011): 350–55. http://dx.doi.org/10.3182/20110828-6-it-1002.01194.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

WANG, Hui, e Wei Cun Zhang. "Weighted Multiple Model Adaptive Control Based on ADRC". Applied Mechanics and Materials 313-314 (março de 2013): 412–17. http://dx.doi.org/10.4028/www.scientific.net/amm.313-314.412.

Texto completo da fonte
Resumo:
Weighted multiple model adaptive control is a combination of off-line design and on-line decision, which combines a finite number of simple controllers by weighting algorithm. Its an effective means to solve the control problems of complex and uncertain systems. Active Disturbance Rejection Control (ADRC) is a new digital control technology with high accuracy and strong robustness. This paper introduces ADRC as local controller in the weighted multiple model adaptive control system. The simulation results show that the proposed system has strong robustness in a wide range.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Irving, E., C. M. Falinower e C. Fonte. "Adaptive Generalized Predictive Control with Multiple Reference Model". IFAC Proceedings Volumes 20, n.º 2 (julho de 1987): 67–72. http://dx.doi.org/10.1016/s1474-6670(17)55939-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Brend, Oliver, Chris Freeman e Mark French. "Multiple-Model Adaptive Control of Functional Electrical Stimulation". IEEE Transactions on Control Systems Technology 23, n.º 5 (setembro de 2015): 1901–13. http://dx.doi.org/10.1109/tcst.2015.2394508.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Rosa, Paulo, e Carlos Silvestre. "Multiple-model adaptive control using set-valued observers". International Journal of Robust and Nonlinear Control 24, n.º 16 (3 de maio de 2013): 2490–511. http://dx.doi.org/10.1002/rnc.3005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Narendra, K. S., e J. Balakrishnan. "Adaptive control using multiple models". IEEE Transactions on Automatic Control 42, n.º 2 (1997): 171–87. http://dx.doi.org/10.1109/9.554398.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Jung, Bokyung, Youdan Kim, Cheolkeun Ha e Min-Jea Tahk. "NONLINEAR RECONFIGURABLE FLIGHT CONTROL SYSTEM USING MULTIPLE MODEL ADAPTIVE CONTROL". IFAC Proceedings Volumes 40, n.º 7 (2007): 171–76. http://dx.doi.org/10.3182/20070625-5-fr-2916.00030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Schiller, Gregory J., e Peter S. Maybeck. "Space Structure Control using Multiple Model Adaptive Estimation And Control". IFAC Proceedings Volumes 27, n.º 13 (setembro de 1994): 219–24. http://dx.doi.org/10.1016/s1474-6670(17)45803-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Schott, Kevin D., e B. Wayne Bequette. "Control of Chemical Reactors Using Multiple-Model Adaptive Control (MMAC)". IFAC Proceedings Volumes 28, n.º 9 (junho de 1995): 345–50. http://dx.doi.org/10.1016/s1474-6670(17)47061-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Liu, J., e R. Li. "Hierarchical adaptive interacting multiple model algorithm". IET Control Theory & Applications 2, n.º 6 (1 de junho de 2008): 479–87. http://dx.doi.org/10.1049/iet-cta:20070340.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Peng, Shu Xing, Hua Xue e Dong Dong Li. "Study on Fuzzy Multiple Reference Model Adaptive Control Strategies". Advanced Materials Research 962-965 (junho de 2014): 2932–38. http://dx.doi.org/10.4028/www.scientific.net/amr.962-965.2932.

Texto completo da fonte
Resumo:
A new fuzzy multiple reference model adaptive control method combined with fuzzy select and conventional adaptive control is presented. To overcome the control difficulties which due to significant and unpredictable system parameter variations, fuzzy logic rules are designed to choose the suitable reference model. The new method is applied to control the speed servo system of dynamic model of BLDCM, and the simulation results show it works well with high dynamic performance and control precision under the condition of great change in reference speed and load torque.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

N. Xu, Y., e W. W. Deng. "Research of Multiple Sensors Adaptive Fault-Tolerant Control Based on T-S Fuzzy Model for EMB System". International Journal of Engineering and Technology 7, n.º 1 (fevereiro de 2015): 65–69. http://dx.doi.org/10.7763/ijet.2015.v7.768.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Yu, Clement, W. G. He, James M. So, Rob Roy, Howard Kaufman e Jonathan C. Newell. "Improvement in Arteral Oxygen Control Using Multiple-Model Adaptive Control Procedures". IEEE Transactions on Biomedical Engineering BME-34, n.º 8 (agosto de 1987): 567–74. http://dx.doi.org/10.1109/tbme.1987.326067.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Gundala, R., K. A. Hoo e M. J. Piovoso. "Multiple Model Adaptive Control Design for a Multiple-Input Multiple-Output Chemical Reactor". Industrial & Engineering Chemistry Research 39, n.º 6 (junho de 2000): 1554–64. http://dx.doi.org/10.1021/ie990496x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

GUO, Yu-Ying, e Bin JIANG. "Multiple Model-based Adaptive Reconfiguration Control for Actuator Fault". Acta Automatica Sinica 35, n.º 11 (24 de dezembro de 2009): 1452–58. http://dx.doi.org/10.3724/sp.j.1004.2009.01452.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Zhang, Weicun, e Qing Li. "Weighted Multiple Model Adaptive Control of Time-varying Systems". Journal of Robotics, Networking and Artificial Life 1, n.º 4 (2015): 291. http://dx.doi.org/10.2991/jrnal.2015.1.4.8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

WATANABE, KEIGO, e SPYROS G. TZAFESTAS. "Multiple-model adaptive control for jump-linear stochastic systems". International Journal of Control 50, n.º 5 (novembro de 1989): 1603–17. http://dx.doi.org/10.1080/00207178908953454.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Baldi, S., P. Ioannou e E. Mosca. "Multiple Model Adaptive Mixing Control: The Discrete-Time Case". IEEE Transactions on Automatic Control 57, n.º 4 (abril de 2012): 1040–45. http://dx.doi.org/10.1109/tac.2011.2169620.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Li, Xiaoli, Shuning Wang e Wei Wang. "IMPROVED MULTIPLE MODEL ADAPTIVE CONTROL AND ITS STABILITY ANALYSIS". IFAC Proceedings Volumes 35, n.º 1 (2002): 97–102. http://dx.doi.org/10.3182/20020721-6-es-1901.00504.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Guo, Y., B. Jiang, Y. Zhang e Z.-W. Zhu. "Multiple model adaptive reconfiguration control of state delayed systems". Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 226, n.º 3 (13 de outubro de 2011): 325–37. http://dx.doi.org/10.1177/0959651811420046.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Brown, D., O. R. Tutty e E. Rogers. "Enhancements to non-linear multiple model adaptive control schemes". International Journal of Control 79, n.º 9 (setembro de 2006): 1010–25. http://dx.doi.org/10.1080/00207170600627485.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

GUO, Yu-Ying, e Bin JIANG. "Multiple Model-based Adaptive Reconfiguration Control for Actuator Fault". Acta Automatica Sinica 35, n.º 11 (novembro de 2009): 1452–58. http://dx.doi.org/10.1016/s1874-1029(08)60117-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Teles, Francisco F., e João M. Lemos. "Cancer therapy optimization based on multiple model adaptive control". Biomedical Signal Processing and Control 48 (fevereiro de 2019): 255–64. http://dx.doi.org/10.1016/j.bspc.2018.09.016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Bendtsen, Jan, e Klaus Trangbaek. "Multiple Model Adaptive Control Using Dual Youla-Kucera Factorisation". IFAC Proceedings Volumes 45, n.º 13 (2012): 63–68. http://dx.doi.org/10.3182/20120620-3-dk-2025.00143.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Anderson, B. D. O., T. S. Brinsmead, F. De Bruyne, J. Hespanha, D. Liberzon e A. S. Morse. "Multiple model adaptive control. Part 1: Finite controller coverings". International Journal of Robust and Nonlinear Control 10, n.º 11-12 (2000): 909–29. http://dx.doi.org/10.1002/1099-1239(200009/10)10:11/12<909::aid-rnc532>3.0.co;2-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Fekri, Sajjad, Michael Athans e Antonio Pascoal. "Robust multiple model adaptive control (RMMAC): a case study". International Journal of Adaptive Control and Signal Processing 21, n.º 1 (2007): 1–30. http://dx.doi.org/10.1002/acs.944.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Sohège, Yves, Marcos Quinones-Grueiro e Gregory Provan. "Automated controller tuning for Weighted Multiple Model Adaptive Control". IFAC-PapersOnLine 56, n.º 2 (2023): 4114–19. http://dx.doi.org/10.1016/j.ifacol.2023.10.1744.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Dougherty, Danielle, e Doug Cooper. "A practical multiple model adaptive strategy for multivariable model predictive control". Control Engineering Practice 11, n.º 6 (junho de 2003): 649–64. http://dx.doi.org/10.1016/s0967-0661(02)00170-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

NANIWA, Tomohide, e Suguru ARIMOTO. "Learning Control and Model-Based Adaptive Control for Coordination of Multiple Manipulators". Transactions of the Society of Instrument and Control Engineers 32, n.º 5 (1996): 706–13. http://dx.doi.org/10.9746/sicetr1965.32.706.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Slavov, Tsonyo. "Algorithm for Multiple Model Adaptive Control Based on Input-Output Plant Model". Cybernetics and Information Technologies 12, n.º 1 (1 de março de 2012): 13–33. http://dx.doi.org/10.2478/cait-2012-0002.

Texto completo da fonte
Resumo:
Abstract An algorithm for multiple model adaptive control of a time-variant plant in the presence of measurement noise is proposed. This algorithm controls the plant using a bank of PID controllers designed on the base of time invariant input/output models. The control signal is formed as weighting sum of the control signals of local PID controllers. The main contribution of the paper is the objective function minimized to determine the weighting coefficients. The proposed algorithm minimizes the sum of the square general error between the model bank output and the plant output. An equation for on-line determination of the weighting coefficients is obtained. They are determined by the current value of the general error covariance matrix. The main advantage of the algorithm is that the derived general error covariance matrix equation is the same as this in the recursive least square algorithm. Thus, most of the well known RLS modifications for the tracking timevariant parameters can be directly implemented. The algorithm performance is tested by simulation. Results with both SISO and MIMO time variant plants are obtained.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Xie, Jing, Shujiang Li, Hua Yan e Dong Yang. "Model reference adaptive control for switched linear systems using switched multiple models control strategy". Journal of the Franklin Institute 356, n.º 5 (março de 2019): 2645–67. http://dx.doi.org/10.1016/j.jfranklin.2018.10.036.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Li, Wen Jun, Bai Ling An e Hong Kun Zhang. "Adaptive Multiple Impedance Control Based on Passivity". Applied Mechanics and Materials 34-35 (outubro de 2010): 265–70. http://dx.doi.org/10.4028/www.scientific.net/amm.34-35.265.

Texto completo da fonte
Resumo:
Adaptive multiple impedance control based on passivity is studied about two robot manipulators cooperating an object which interacts with external environment actively. The dynamic model is derived by Newton-Euler equation and the relations between the forces are analyzed. The relations between stiffness coefficient and convergence are explained by solving the differential equation when the stiffness coefficient is known. The adaptive impedance controller based on passivity is designed combining adaptive control and generalized impedance control when the stiffness coefficient is unknown. The impedance control based on internal force is adopted for the cooperative system. The simulation results prove the validity of the method.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Tjahyadi, Hendra, Fangpo He e Karl Sammut. "Vibration control of a cantilever beam using multiple model adaptive resonant control". IFAC Proceedings Volumes 37, n.º 12 (agosto de 2004): 409–13. http://dx.doi.org/10.1016/s1474-6670(17)31503-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Huang, Quanzhen, Suxia Chen, Mingming Huang e Zhuangzhi Guo. "Adaptive Active Noise Suppression Using Multiple Model Switching Strategy". Shock and Vibration 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/7289076.

Texto completo da fonte
Resumo:
Active noise suppression for applications where the system response varies with time is a difficult problem. The computation burden for the existing control algorithms with online identification is heavy and easy to cause control system instability. A new active noise control algorithm is proposed in this paper by employing multiple model switching strategy for secondary path varying. The computation is significantly reduced. Firstly, a noise control system modeling method is proposed for duct-like applications. Then a multiple model adaptive control algorithm is proposed with a new multiple model switching strategy based on filter-u least mean square (FULMS) algorithm. Finally, the proposed algorithm was implemented on Texas Instruments digital signal processor (DSP) TMS320F28335 and real time experiments were done to test the proposed algorithm and FULMS algorithm with online identification. Experimental verification tests show that the proposed algorithm is effective with good noise suppression performance.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Raafat, Safanah M., Ban K. Abd-AL Amear e Ayman Al-Khazraji. "Multiple model adaptive postprandial glucose control of type 1 diabetes". Engineering Science and Technology, an International Journal 24, n.º 1 (fevereiro de 2021): 83–91. http://dx.doi.org/10.1016/j.jestch.2020.11.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Yang, Chao, e Yingmin Jia. "Adaptive Multiple-Model Control of A Class of Nonlinear Systems". Journal of Robotics, Networking and Artificial Life 2, n.º 2 (2015): 69. http://dx.doi.org/10.2991/jrnal.2015.2.2.1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

WATANABE, Keigo. "A Method of Hierarchical Multiple Model Adaptive Estimation and Control". Transactions of the Institute of Systems, Control and Information Engineers 1, n.º 4 (1988): 127–36. http://dx.doi.org/10.5687/iscie.1.127.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Boskovic, Jovan D., Joseph A. Jackson, Raman K. Mehra e Nhan T. Nguyen. "Multiple-Model Adaptive Fault-Tolerant Control of a Planetary Lander". Journal of Guidance, Control, and Dynamics 32, n.º 6 (novembro de 2009): 1812–26. http://dx.doi.org/10.2514/1.42719.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Jung, Bokyung, Seong-Kyun Jeong, Dong-Hyun Lee e Youdan Kim. "ADAPTIVE RECONFIGURABLE FLIGHT CONTROL SYSTEM USING MULTIPLE MODEL MODE SWITCHING". IFAC Proceedings Volumes 38, n.º 1 (2005): 115–20. http://dx.doi.org/10.3182/20050703-6-cz-1902.01980.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia