Literatura científica selecionada sobre o tema "Multiphysical inversion"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Multiphysical inversion".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Multiphysical inversion"
Zheng, Yi-kang, Chong Wang, Hao-hong Liang, Yi-bo Wang e Rong-shu Zeng. "3D seismic forward modeling from the multiphysical inversion at the Ketzin CO2 storage site". Applied Geophysics 21, n.º 3 (setembro de 2024): 593–605. http://dx.doi.org/10.1007/s11770-024-1132-5.
Texto completo da fonteAl-Yasiri, Zainab Riyadh Shaker, Hayder Majid Mutashar, Klaus Gürlebeck e Tom Lahmer. "Damage Sensitive Signals for the Assessment of the Conditions of Wind Turbine Rotor Blades Using Electromagnetic Waves". Infrastructures 7, n.º 8 (12 de agosto de 2022): 104. http://dx.doi.org/10.3390/infrastructures7080104.
Texto completo da fonteColombo, Daniele, Diego Rovetta e Ersan Turkoglu. "CSEM-regularized seismic velocity inversion: A multiscale, hierarchical workflow for subsalt imaging". GEOPHYSICS 83, n.º 5 (1 de setembro de 2018): B241—B252. http://dx.doi.org/10.1190/geo2017-0454.1.
Texto completo da fonteSun, Jiajia, Daniele Colombo, Yaoguo Li e Jeffrey Shragge. "Geophysics introduces new section on multiphysics and joint inversion". Leading Edge 39, n.º 10 (outubro de 2020): 753–54. http://dx.doi.org/10.1190/tle39100753.1.
Texto completo da fonteGao, Guozhong, Aria Abubakar e Tarek M. Habashy. "Joint petrophysical inversion of electromagnetic and full-waveform seismic data". GEOPHYSICS 77, n.º 3 (1 de maio de 2012): WA3—WA18. http://dx.doi.org/10.1190/geo2011-0157.1.
Texto completo da fonteLouboutin, Mathias, Ziyi Yin, Rafael Orozco, Thomas J. Grady, Ali Siahkoohi, Gabrio Rizzuti, Philipp A. Witte, Olav Møyner, Gerard J. Gorman e Felix J. Herrmann. "Learned multiphysics inversion with differentiable programming and machine learning". Leading Edge 42, n.º 7 (julho de 2023): 474–86. http://dx.doi.org/10.1190/tle42070474.1.
Texto completo da fonteTu, Xiaolei, e Michael S. Zhdanov. "Joint Gramian inversion of geophysical data with different resolution capabilities: case study in Yellowstone". Geophysical Journal International 226, n.º 2 (5 de abril de 2021): 1058–85. http://dx.doi.org/10.1093/gji/ggab131.
Texto completo da fonteColombo, Daniele, Diego Rovetta, Taqi Al-Yousuf, Ernesto Sandoval, Ersan Turkoglu e Gary McNeice. "Multiple joint wavefield inversions: Theory and field data implementations". Leading Edge 39, n.º 6 (junho de 2020): 411–21. http://dx.doi.org/10.1190/tle39060411.1.
Texto completo da fonteZhdanov, Michael S., Michael Jorgensen e Leif Cox. "Advanced Methods of Joint Inversion of Multiphysics Data for Mineral Exploration". Geosciences 11, n.º 6 (21 de junho de 2021): 262. http://dx.doi.org/10.3390/geosciences11060262.
Texto completo da fonteWu, Pingping, Handong Tan, Changhong Lin, Miao Peng, Huan Ma e Zhengwen Yan. "Joint inversion of two-dimensional magnetotelluric and surface wave dispersion data with cross-gradient constraints". Geophysical Journal International 221, n.º 2 (25 de janeiro de 2020): 938–50. http://dx.doi.org/10.1093/gji/ggaa045.
Texto completo da fonteTeses / dissertações sobre o assunto "Multiphysical inversion"
Varignier, Geoffrey. "Construction de fonctions de sensibilité spatiales et prédictions rapides de diagraphies nucléaires en environnement de puits tubés". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALY026.
Texto completo da fonteIn petroleum wells, many tools operating on different physical principles are commonly used for data acquisition. This thesis focuses on actives nuclear logging probes involving a neutron or a gamma source. They are used in the oil industry to characterize the well geology and have been initially developed to realize quantitative measurements in open hole conditions where the probe is directly in contact with the rock formation. Once the petroleum well is drilled, a steel casing is installed and cemented, the probes are then no longer in contact with the rock formation and the measurements are considered qualitative due to the complexity of the geometry and the signal attenuation.With the hydrocarbon resources rarefaction, the number of explorations projects decease each year. Petroleum companies have more and more mature wells whose production capacities must be maintained and others at the end of their life which must be abandoned. Those phases require systematically logging measurements. The quantity of logs in cased-hole configuration tends to increase a lot and it becomes necessary to improve their interpretation.The industrial problematic is to characterize quantitatively, in a filed with strong radial heterogeneity, all the components the well (e.g. the fluids, the casing, the cement) and not just the rock reservoir parameters. The approach developed in the thesis is based on the concept of sensitivity function of nuclear logging probes, which represents the 3D dependency of the measurement to the model elements and are obtained by Monte-Carlo simulation. Due to the large number of unknowns, a multiphysical inversion considering the all the measurements of the different nuclear probes (porosity by neutron diffusion, density by gamma diffusion, lithology by neutron-gamma activation) is essential.The first part of the thesis allowed to compare the Monte-Carlo particles transport codes GEANT4 and MCNP for Geosciences applications. Results show a very good agreement for the gamma-gamma physics and a good agreement for the neutron-neutron physics but significant discrepancies for the neutron-gamma physics where MCNP seems to be more relevant.The second part of the thesis allowed to experimental validate Monte-Carlo simulations and to design a sensitivity function computation method specific for the cased-hole configuration. The validation is a comparison between the experimental sensitivity functions measured in calibration center and the numerical sensitivity functions computed using two different methods, the first one based on spatial importances estimated with MCNP and the second one based on interaction locations obtained with GEANT4. The results show good experimental agreement between the measured and calculated radial and axial sensitivity profiles, which validates the concept of sensitivity function with a preference for the interaction locations method which presents greater radial contrast between the different components of the well.The third part of the thesis consisted of making the geological interpretation of a reservoir zone of a cased hole well with sensitivity functions. The neutron-gamma and porosity logs predicted using the sensitivity functions are compared to the measured logs. An optimal earth model is obtained by iteration, showing a good capacity of the fast forward modeling algorithums to quantitatively reproduce the logs in cased-hole configuration providing that a relevant calibration is apply
Livros sobre o assunto "Multiphysical inversion"
Zhdanov, Michael S. Advanced Methods of Joint Inversion and Fusion of Multiphysics Data. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3.
Texto completo da fonteZhdanov, Michael. Advanced Methods of Joint Inversion and Fusion of Multiphysics Data. Springer, 2023.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Multiphysical inversion"
Zhdanov, Michael S. "Joint Focusing Inversion of Multiphysics Data". In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 193–213. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_10.
Texto completo da fonteZhdanov, Michael S. "Machine Learning Inversion of Multiphysics Data". In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 305–15. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_16.
Texto completo da fonteZhdanov, Michael S. "Introduction to Inversion Theory". In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 3–12. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_1.
Texto completo da fonteZhdanov, Michael S. "Joint Minimum Entropy Inversion". In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 215–24. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_11.
Texto completo da fonteZhdanov, Michael S. "Probabilistic Approach to Gramian Inversion". In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 245–58. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_13.
Texto completo da fonteZhdanov, Michael S. "Joint Inversion Based on Structural Similarities". In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 177–92. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_9.
Texto completo da fonteZhdanov, Michael S. "Gradient-Type Methods of Nonlinear Inversion". In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 129–59. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_7.
Texto completo da fonteZhdanov, Michael S. "Gramian Method of Generalized Joint Inversion". In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 225–43. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_12.
Texto completo da fonteZhdanov, Michael S. "Simultaneous Processing and Fusion of Multiphysics Data and Images". In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 259–74. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_14.
Texto completo da fonteZhdanov, Michael. "Modeling and Inversion of Potential Field Data". In Advanced Methods of Joint Inversion and Fusion of Multiphysics Data, 319–37. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6722-3_17.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Multiphysical inversion"
Feng, Shihang, Peng Jin, Xitong Zhang, Yinpeng Chen, David Alumbaugh, Michael Commer e Youzuo Lin. "Extremely weak supervision inversion of multiphysical properties". In Second International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists and American Association of Petroleum Geologists, 2022. http://dx.doi.org/10.1190/image2022-3746487.1.
Texto completo da fonteHallinan, Stephen, Wolfgang Soyer, Randall Mackie, Carsten Scholl e Federico Miorelli. "Geologically Consistent Multiphysics Inversion". In International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-21936-ea.
Texto completo da fonteHu, Yanyan, Xiaolong Wei, Xuqing Wu, Jiajia Sun, Jiefu Chen, Jiuping Chen e Yueqing Huang. "Deep learning-enhanced multiphysics joint inversion". In First International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists, 2021. http://dx.doi.org/10.1190/segam2021-3583667.1.
Texto completo da fonteMolodtsov, Dmitry, e Vladimir Troyan. "Multiphysics joint inversion through joint sparsity regularization". In SEG Technical Program Expanded Abstracts 2017. Society of Exploration Geophysicists, 2017. http://dx.doi.org/10.1190/segam2017-17792589.1.
Texto completo da fonteHu, Yanyan, Jiefu Chen, Xuqing Wu e Yueqin Huang. "Multiphysics Joint Inversion Using Successive Deep Perceptual Constraints". In 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/USNC-URSI). IEEE, 2022. http://dx.doi.org/10.1109/ap-s/usnc-ursi47032.2022.9887246.
Texto completo da fonteCeci, F., e A. Battaglini. "Reducing geothermal exploration uncertainty via multiphysics joint inversion". In 2nd Geoscience & Engineering in Energy Transition Conference. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202121025.
Texto completo da fonteShahin, A., M. Myers e L. Hathon. "Deciphering Dual Porosity Carbonates Using Multiphysics Modeling and Inversion". In Third EAGE WIPIC Workshop: Reservoir Management in Carbonates. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201903112.
Texto completo da fonteHu, Yanyan, Jiefu Chen, Xuqing Wu e Yueqin Huang. "Deep Learning Enhanced Joint Inversion of Multiphysics Data with Nonconforming Discretization". In 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). IEEE, 2021. http://dx.doi.org/10.1109/aps/ursi47566.2021.9703802.
Texto completo da fonteChikhaoui, Zeineb, Julien Gomand, François Malburet e Pierre-Jean Barre. "Complementary Use of BG and EMR Formalisms for Multiphysics Systems Analysis and Control". In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82318.
Texto completo da fonteDomenzain, Diego, John Bradford e Jodi Mead. "Multiphysics joint inversion of field FWI-GPR and ER surface acquired data". In First International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists, 2021. http://dx.doi.org/10.1190/segam2021-3576479.1.
Texto completo da fonte