Literatura científica selecionada sobre o tema "Multiomic integration"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Multiomic integration".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Multiomic integration"
Ugidos, Manuel, Sonia Tarazona, José M. Prats-Montalbán, Alberto Ferrer e Ana Conesa. "MultiBaC: A strategy to remove batch effects between different omic data types". Statistical Methods in Medical Research 29, n.º 10 (4 de março de 2020): 2851–64. http://dx.doi.org/10.1177/0962280220907365.
Texto completo da fonteBlutt, Sarah E., Cristian Coarfa, Josef Neu e Mohan Pammi. "Multiomic Investigations into Lung Health and Disease". Microorganisms 11, n.º 8 (19 de agosto de 2023): 2116. http://dx.doi.org/10.3390/microorganisms11082116.
Texto completo da fonteRamos, Marcel, Ludwig Geistlinger, Sehyun Oh, Lucas Schiffer, Rimsha Azhar, Hanish Kodali, Ino de Bruijn et al. "Multiomic Integration of Public Oncology Databases in Bioconductor". JCO Clinical Cancer Informatics, n.º 4 (outubro de 2020): 958–71. http://dx.doi.org/10.1200/cci.19.00119.
Texto completo da fonteHatami, Elham, Hye-Won Song, Hongduan Huang, Zhiqi Zhang, Thomas McCarthy, Youngsook Kim, Ruifang Li et al. "Integration of single-cell transcriptomic and chromatin accessibility on heterogenicity of human peripheral blood mononuclear cells utilizing microwell-based single-cell partitioning technology". Journal of Immunology 212, n.º 1_Supplement (1 de maio de 2024): 1508_5137. http://dx.doi.org/10.4049/jimmunol.212.supp.1508.5137.
Texto completo da fonteAntequera-González, Borja, Neus Martínez-Micaelo, Carlos Sureda-Barbosa, Laura Galian-Gay, M. Sol Siliato-Robles, Carmen Ligero, Artur Evangelista e Josep M. Alegret. "Specific Multiomic Profiling in Aortic Stenosis in Bicuspid Aortic Valve Disease". Biomedicines 12, n.º 2 (6 de fevereiro de 2024): 380. http://dx.doi.org/10.3390/biomedicines12020380.
Texto completo da fonteSilberberg, Gilad, Clare Killick-Cole, Yaron Mosesson, Haia Khoury, Xuan Ren, Mara Gilardi, Daniel Ciznadija, Paolo Schiavini, Marianna Zipeto e Michael Ritchie. "Abstract 854: A pharmaco-pheno-multiomic integration analysis of pancreatic cancer: A highly predictive biomarker model of biomarkers of Gemcitabine/Abraxane sensitivity and resistance". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 854. http://dx.doi.org/10.1158/1538-7445.am2023-854.
Texto completo da fonteCulley, Christopher, Supreeta Vijayakumar, Guido Zampieri e Claudio Angione. "A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth". Proceedings of the National Academy of Sciences 117, n.º 31 (16 de julho de 2020): 18869–79. http://dx.doi.org/10.1073/pnas.2002959117.
Texto completo da fontePratapa, Aditya, Lydia Hernandez, Bassem Ben Cheikh, Niyati Jhaveri e Arutha Kulasinghe. "Abstract 5503: Ultrahigh-plex spatial phenotyping of head and neck cancer tissue uncovers multiomic signatures of immunotherapy response". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 5503. http://dx.doi.org/10.1158/1538-7445.am2024-5503.
Texto completo da fonteSignorelli, Mirko, Roula Tsonaka, Annemieke Aartsma-Rus e Pietro Spitali. "Multiomic characterization of disease progression in mice lacking dystrophin". PLOS ONE 18, n.º 3 (31 de março de 2023): e0283869. http://dx.doi.org/10.1371/journal.pone.0283869.
Texto completo da fonteSilberberg, Gilad, Bandana Vishwakarama, Brandon Walling, Chelsea Riveley, Alessandra Audia, Marianna Zipeto, Ido Sloma, Amy Wesa e Michael Ritchie. "Abstract 3907: A pheno-multiomic integration analysis of primary samples of acute myeloid leukemia reveals biomarkers of cytarabine resistance". Cancer Research 82, n.º 12_Supplement (15 de junho de 2022): 3907. http://dx.doi.org/10.1158/1538-7445.am2022-3907.
Texto completo da fonteTeses / dissertações sobre o assunto "Multiomic integration"
Bretones, Santamarina Jorge. "Integrated multiomic analysis, synthetic lethality inference and network pharmacology to identify SWI/SNF subunit-specific pathway alterations and targetable vulnerabilities". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL049.
Texto completo da fonteNowadays the cancer community agrees on the need for patient-tailored diagnostics and therapies, which calls for the design of translational studies combining experimental and statistical approaches. Current challenges include the validation of preclinical experimental models and their multi-omics profiling, along with the design of dedicated bioinformatics and mathematical pipelines (i.e. dimension reduction, multi-omics integration, mechanism-based digital twins) for identifying patient-specific optimal drug combinations.To address these challenges, we designed bioinformatics and statistical approaches to analyze various large-scale data types and integrate them to identify targetable vulnerabilities in cancer cell lines. We developed our pipeline in the context of alterations of the SWItch Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. SWI/SNF mutations occur in ~20% of all cancers, but such malignancies still lack efficient therapies. We leveraged a panel of HAP1 isogenic cell lines mutated for SWI/SNF subunits or other epigenetic enzymes for which transcriptomics, proteomics and drug screening data were available.We worked on four methodological axes, the first one being the design of an optimized pathway enrichment pipeline to detect pathways differentially activated in the mutants against the wild-type. We developed a pruning algorithm to reduce gene and pathway redundancy in the Reactome database and improve the interpretability of the results. We evidenced the bad performance of first-generation enrichment methods and proposed to combine the topology-based method ROntoTools with pre-ranked GSEA to increase enrichment performance .Secondly, we analyzed drug screens, processed drug-gene interaction databases to obtain genes and pathways targeted by effective drugs and integrated them with proteomics enrichment results to infer targetable vulnerabilities selectively harming mutant cell lines. The validation of potential targets was achieved using a novel method detecting synthetic lethality from transcriptomics and CRISPR data of independent cancer cell lines in DepMap, run for each studied epigenetic enzyme. Finally, to further inform multi-agent therapy optimization, we designed a first digital representation of targetable pathways for SMARCA4-mutated tumors by building a directed protein-protein interaction network connecting targets inferred from multi-omics HAP1 and DepMap CRISPR analyses. We used the OmniPath database to retrieve direct protein interactions and added the connecting neighboring genes with the Neko algorithm.These methodological developments were applied to the HAP1 panel datasets. Using our optimized enrichment pipeline, we identified Metabolism of proteins as the most frequently dysregulated pathway category in SWI/SNF-KO lines. Next, the drug screening analysis revealed cytotoxic and epigenetic drugs selectively targeting SWI/SNF mutants, including CBP/EP300 or mitochondrial respiration inhibitors, also identified as synthetic lethal by our Depmap CRISPR analysis. Importantly, we validated these findings in two independent isogenic cancer-relevant experimental models. The Depmap CRISPR analysis was also used in a separate project to identify synthetic lethal interactions in glioblastoma, which proved relevant for patient-derived cell lines and are being validated in dedicated drug screens.To sum up, we developed computational methods to integrate multi-omics expression data with drug screening and CRISPR assays and identified new vulnerabilities in SWI/SNF mutants which were experimentally revalidated. This study was limited to the identification of effective single agents. As a future direction, we propose to design mathematical models representing targetable protein networks using differential equations and their use in numerical optimization and machine learning procedures as a key tool to investigate concomitant druggable targets and personalize drug combinations
Coronado, Zamora Marta. "Mapping natural selection through the drosophila melanogaster development following a multiomics data integration approach". Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/666761.
Texto completo da fonteCharles Darwin's theory of evolution proposes that the adaptations of organisms arise because of the process of natural selection. Natural selection leaves a characteristic footprint on the patterns of genetic variation that can be detected by means of statistical methods of genomic analysis. Today, we can infer the action of natural selection in a genome and even quantify what proportion of the incorporated genetic variants in the populations are adaptive. The genomic era has led to the paradoxical situation in which much more evidence of selection is available on the genome than on the phenotype of the organism, the primary target of natural selection. The advent of next-generation sequencing (NGS) technologies is providing a vast amount of -omics data, especially increasing the breadth of available developmental transcriptomic series. In contrast to the genome of an organism, the transcriptome is a phenotype that varies during the lifetime and across different body parts. Studying a developmental transcriptome from a population genomic and spatio-temporal perspective is a promising approach to understand the genetic and developmental basis of the phenotypic change. This thesis is an integrative population genomics and evolutionary biology project following a bioinformatic approach. It is performed in three sequential steps: (i) the comparison of different variations of the McDonald and Kreitman test (MKT), a method to detect recurrent positive selection on coding sequences at the molecular level, using empirical data from a North American population of D. melanogaster and simulated data, (ii) the inference of the genome features correlated with the evolutionary rate of protein-coding genes, and (iii) the integration of patterns of genomic variation with annotations of large sets of spatio-temporal developmental data (evo-dev-omics). As a result of this approach, we have carried out two different studies integrating the patterns of genomic diversity with multiomics layers across developmental time and space. In the first study we give a global perspective on how natural selection acts during the whole life cycle of D. melanogaster, assessing whether different regimes of selection act through the developmental stages. In the second study, we draw an exhaustive map of selection acting on the complete embryo anatomy of D. melanogaster. Taking all together, our results show that genes expressed in mid- and late-embryonic development stages exhibit the highest sequence conservation and the most complex structure: they are larger, consist of more exons and longer introns, encode a large number of isoforms and, on average, are highly expressed. Selective constraint is pervasive, particularly on the digestive and nervous systems. On the other hand, earlier stages of embryonic development are the most divergent, which seems to be due to the diminished efficiency of natural selection on maternal-effect genes. Additionally, genes expressed in these first stages have on average the shortest introns, probably due to the need for a rapid and efficient expression during the short cell cycles. Adaptation is found in the structures that also show evidence of adaptation in the adult, the immune and reproductive systems. Finally, genes that are expressed in one or a few different anatomical structures are younger and have higher rates of evolution, unlike genes that are expressed in all or almost all structures. Population genomics is no longer a theoretical science, it has become an interdisciplinary field where bioinformatics, large functional -omics datasets, statistical and evolutionary models and emerging molecular techniques are all integrated to get a systemic view of the causes and consequences of evolution. The integration of population genomics with other phenotypic multiomics data is the necessary step to gain a global picture of how adaptation occurs in nature.
Bodily, Weston Reed. "Integrative Analysis to Evaluate Similarity Between BRCAness Tumors and BRCA Tumors". BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/6800.
Texto completo da fonteCapítulos de livros sobre o assunto "Multiomic integration"
Lee, Jae Jin, Philip Sell e Hyungjin Eoh. "Multiomics Integration of Tuberculosis Pathogenesis". In Integrated Science, 937–67. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-15955-8_45.
Texto completo da fonteHajYasien, Ahmed. "Introduction to Multiomics Technology". In Machine Learning Methods for Multi-Omics Data Integration, 1–11. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36502-7_1.
Texto completo da fonteLiu, Qian, Shujun Huang, Zhongyuan Zhang, Ted M. Lakowski, Wei Xu e Pingzhao Hu. "Multiomics-Based Tensor Decomposition for Characterizing Breast Cancer Heterogeneity". In Machine Learning Methods for Multi-Omics Data Integration, 133–50. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36502-7_8.
Texto completo da fonteNing, Kang, e Yuxue Li. "Synthetic Biology-Related Multiomics Data Integration and Data Mining Techniques". In Synthetic Biology and iGEM: Techniques, Development and Safety Concerns, 31–38. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2460-8_3.
Texto completo da fonteKamar, Mohd Danish, Madhu Bala, Gaurav Prajapati e Ratan Singh Ray. "Multiomics Data Integration in Understanding of Inflammation and Inflammatory Diseases". In Inflammation Resolution and Chronic Diseases, 235–43. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0157-5_11.
Texto completo da fonteIslam, Mousona. "Strategic Short Note: Integration of Multiomics Approaches for Sustainable Crop Improvement". In IoT and AI in Agriculture, 149–53. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1263-2_9.
Texto completo da fonteZhang, Tianyu, Liwei Zhang, Philip R. O. Payne e Fuhai Li. "Synergistic Drug Combination Prediction by Integrating Multiomics Data in Deep Learning Models". In Methods in Molecular Biology, 223–38. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0849-4_12.
Texto completo da fonteSekar, Aishwarya, e Gunasekaran Krishnasamy. "Integrating Machine Learning Strategies with Multiomics to Augment Prognosis of Chronic Diseases". In Bioinformatics and Computational Biology, 87–97. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003331247-9.
Texto completo da fonteLee, Hayan, Gilbert Feng, Ed Esplin e Michael Snyder. "Predictive Signatures for Lung Adenocarcinoma Prognostic Trajectory by Multiomics Data Integration and Ensemble Learning". In Mathematical and Computational Oncology, 9–23. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91241-3_2.
Texto completo da fonteMarín de Mas, Igor. "Multiomic Data Integration and Analysis via Model-Driven Approaches". In Comprehensive Analytical Chemistry, 447–76. Elsevier, 2018. http://dx.doi.org/10.1016/bs.coac.2018.07.005.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Multiomic integration"
Bhattacharyya, Rupam, Nicholas Henderson e Veerabhadran Baladandayuthapani. "BaySyn: Bayesian Evidence Synthesis for Multi-system Multiomic Integration". In Pacific Symposium on Biocomputing 2023. WORLD SCIENTIFIC, 2022. http://dx.doi.org/10.1142/9789811270611_0026.
Texto completo da fonteSinghal, Pankhuri, Shefali S. Verma, Scott M. Dudek e Marylyn D. Ritchie. "Neural network-based multiomics data integration in Alzheimer's disease". In GECCO '19: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3319619.3321920.
Texto completo da fonteBhat, Aadil Rashid, e Rana Hashmy. "Artificial Intelligence-based Multiomics Integration Model for Cancer Subtyping". In 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). IEEE, 2022. http://dx.doi.org/10.23919/indiacom54597.2022.9763283.
Texto completo da fonteJiang, Yuexu, Yanchun Liang, Duolin Wang, Dong Xu e Trupti Joshi. "IMPRes: Integrative MultiOmics pathway resolution algorithm and tool". In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017. http://dx.doi.org/10.1109/bibm.2017.8218016.
Texto completo da fonteWheelock, Åsa M. "Multiomics integration-based molecular characterizations in COPD and post-COVID". In RExPO23. REPO4EU, 2023. http://dx.doi.org/10.58647/rexpo.23033.
Texto completo da fonteJagtap, Surabhi, Abdulkadir Celikkanat, Aurelic Piravre, Frederiuue Bidard, Laurent Duval e Fragkiskos D. Malliaros. "Multiomics Data Integration for Gene Regulatory Network Inference with Exponential Family Embeddings". In 2021 29th European Signal Processing Conference (EUSIPCO). IEEE, 2021. http://dx.doi.org/10.23919/eusipco54536.2021.9616279.
Texto completo da fonteKoca, Mehmet Burak, e Fatih Erdoğan Sevilgen. "Comparative Analysis of Fusion Techniques for Integrating Single-cell Multiomics Datasets". In 2024 32nd Signal Processing and Communications Applications Conference (SIU). IEEE, 2024. http://dx.doi.org/10.1109/siu61531.2024.10601063.
Texto completo da fonteSingh, Satishkumar, Fouad Choueiry, Amber Hart, Anuvrat Sircar, Jiangjiang Zhu e Lalit Sehgal. "Abstract 2351: Multiomics integration elucidates onco-metabolic modulators of drug resistance in lymphoma". In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-2351.
Texto completo da fonteBareche, Yacine, David Venet, Philippe Aftimos, Michail Ignatiadis, Martine Piccart, Francoise Rothe e Christos Sotiriou. "Abstract 3698: Unraveling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis". In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-3698.
Texto completo da fonteAlkhateeb, Abedalrhman, Li Zhou, Ashraf Abou Tabl e Luis Rueda. "Deep Learning Approach for Breast Cancer InClust 5 Prediction based on Multiomics Data Integration". In BCB '20: 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3388440.3415992.
Texto completo da fonte