Artigos de revistas sobre o tema "Multimodal Embeddings"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Multimodal Embeddings".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Tyshchuk, Kirill, Polina Karpikova, Andrew Spiridonov, Anastasiia Prutianova, Anton Razzhigaev e Alexander Panchenko. "On Isotropy of Multimodal Embeddings". Information 14, n.º 7 (10 de julho de 2023): 392. http://dx.doi.org/10.3390/info14070392.
Texto completo da fonteGuo, Zhiqiang, Jianjun Li, Guohui Li, Chaoyang Wang, Si Shi e Bin Ruan. "LGMRec: Local and Global Graph Learning for Multimodal Recommendation". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 8 (24 de março de 2024): 8454–62. http://dx.doi.org/10.1609/aaai.v38i8.28688.
Texto completo da fonteShang, Bin, Yinliang Zhao, Jun Liu e Di Wang. "LAFA: Multimodal Knowledge Graph Completion with Link Aware Fusion and Aggregation". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 8 (24 de março de 2024): 8957–65. http://dx.doi.org/10.1609/aaai.v38i8.28744.
Texto completo da fonteSun, Zhongkai, Prathusha Sarma, William Sethares e Yingyu Liang. "Learning Relationships between Text, Audio, and Video via Deep Canonical Correlation for Multimodal Language Analysis". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 05 (3 de abril de 2020): 8992–99. http://dx.doi.org/10.1609/aaai.v34i05.6431.
Texto completo da fonteMerkx, Danny, e Stefan L. Frank. "Learning semantic sentence representations from visually grounded language without lexical knowledge". Natural Language Engineering 25, n.º 4 (julho de 2019): 451–66. http://dx.doi.org/10.1017/s1351324919000196.
Texto completo da fonteTang, Zhenchao, Jiehui Huang, Guanxing Chen e Calvin Yu-Chian Chen. "Comprehensive View Embedding Learning for Single-Cell Multimodal Integration". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 14 (24 de março de 2024): 15292–300. http://dx.doi.org/10.1609/aaai.v38i14.29453.
Texto completo da fonteZhang, Linhai, Deyu Zhou, Yulan He e Zeng Yang. "MERL: Multimodal Event Representation Learning in Heterogeneous Embedding Spaces". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 16 (18 de maio de 2021): 14420–27. http://dx.doi.org/10.1609/aaai.v35i16.17695.
Texto completo da fonteSah, Shagan, Sabarish Gopalakishnan e Raymond Ptucha. "Aligned attention for common multimodal embeddings". Journal of Electronic Imaging 29, n.º 02 (25 de março de 2020): 1. http://dx.doi.org/10.1117/1.jei.29.2.023013.
Texto completo da fonteZhang, Rongchao, Yiwei Lou, Dexuan Xu, Yongzhi Cao, Hanpin Wang e Yu Huang. "A Learnable Discrete-Prior Fusion Autoencoder with Contrastive Learning for Tabular Data Synthesis". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 15 (24 de março de 2024): 16803–11. http://dx.doi.org/10.1609/aaai.v38i15.29621.
Texto completo da fonteLin, Kaiyi, Xing Xu, Lianli Gao, Zheng Wang e Heng Tao Shen. "Learning Cross-Aligned Latent Embeddings for Zero-Shot Cross-Modal Retrieval". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 07 (3 de abril de 2020): 11515–22. http://dx.doi.org/10.1609/aaai.v34i07.6817.
Texto completo da fonteZhu, Chaoyu, Zhihao Yang, Xiaoqiong Xia, Nan Li, Fan Zhong e Lei Liu. "Multimodal reasoning based on knowledge graph embedding for specific diseases". Bioinformatics 38, n.º 8 (12 de fevereiro de 2022): 2235–45. http://dx.doi.org/10.1093/bioinformatics/btac085.
Texto completo da fonteTripathi, Aakash, Asim Waqas, Yasin Yilmaz e Ghulam Rasool. "Abstract 4905: Multimodal transformer model improves survival prediction in lung cancer compared to unimodal approaches". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 4905. http://dx.doi.org/10.1158/1538-7445.am2024-4905.
Texto completo da fonteOta, Kosuke, Keiichiro Shirai, Hidetoshi Miyao e Minoru Maruyama. "Multimodal Analogy-Based Image Retrieval by Improving Semantic Embeddings". Journal of Advanced Computational Intelligence and Intelligent Informatics 26, n.º 6 (20 de novembro de 2022): 995–1003. http://dx.doi.org/10.20965/jaciii.2022.p0995.
Texto completo da fonteMai, Sijie, Haifeng Hu e Songlong Xing. "Modality to Modality Translation: An Adversarial Representation Learning and Graph Fusion Network for Multimodal Fusion". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 01 (3 de abril de 2020): 164–72. http://dx.doi.org/10.1609/aaai.v34i01.5347.
Texto completo da fonteKim, Donghyun, Kuniaki Saito, Kate Saenko, Stan Sclaroff e Bryan Plummer. "MULE: Multimodal Universal Language Embedding". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 07 (3 de abril de 2020): 11254–61. http://dx.doi.org/10.1609/aaai.v34i07.6785.
Texto completo da fonteWehrmann, Jônatas, Anderson Mattjie e Rodrigo C. Barros. "Order embeddings and character-level convolutions for multimodal alignment". Pattern Recognition Letters 102 (janeiro de 2018): 15–22. http://dx.doi.org/10.1016/j.patrec.2017.11.020.
Texto completo da fonteMithun, Niluthpol C., Juncheng Li, Florian Metze e Amit K. Roy-Chowdhury. "Joint embeddings with multimodal cues for video-text retrieval". International Journal of Multimedia Information Retrieval 8, n.º 1 (12 de janeiro de 2019): 3–18. http://dx.doi.org/10.1007/s13735-018-00166-3.
Texto completo da fonteNayak, Roshan, B. S. Ullas Kannantha, Kruthi S e C. Gururaj. "Multimodal Offensive Meme Classification u sing Transformers and BiLSTM". International Journal of Engineering and Advanced Technology 11, n.º 3 (28 de fevereiro de 2022): 96–102. http://dx.doi.org/10.35940/ijeat.c3392.0211322.
Texto completo da fonteChen, Weijia, Zhijun Lu, Lijue You, Lingling Zhou, Jie Xu e Ken Chen. "Artificial Intelligence–Based Multimodal Risk Assessment Model for Surgical Site Infection (AMRAMS): Development and Validation Study". JMIR Medical Informatics 8, n.º 6 (15 de junho de 2020): e18186. http://dx.doi.org/10.2196/18186.
Texto completo da fonteN.D., Smelik. "Multimodal topic model for texts and images utilizing their embeddings". Machine Learning and Data Analysis 2, n.º 4 (2016): 421–41. http://dx.doi.org/10.21469/22233792.2.4.05.
Texto completo da fonteAbdou, Ahmed, Ekta Sood, Philipp Müller e Andreas Bulling. "Gaze-enhanced Crossmodal Embeddings for Emotion Recognition". Proceedings of the ACM on Human-Computer Interaction 6, ETRA (13 de maio de 2022): 1–18. http://dx.doi.org/10.1145/3530879.
Texto completo da fonteChen, Qihua, Xuejin Chen, Chenxuan Wang, Yixiong Liu, Zhiwei Xiong e Feng Wu. "Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 2 (24 de março de 2024): 1174–82. http://dx.doi.org/10.1609/aaai.v38i2.27879.
Texto completo da fonteHu, Wenbo, Yifan Xu, Yi Li, Weiyue Li, Zeyuan Chen e Zhuowen Tu. "BLIVA: A Simple Multimodal LLM for Better Handling of Text-Rich Visual Questions". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 3 (24 de março de 2024): 2256–64. http://dx.doi.org/10.1609/aaai.v38i3.27999.
Texto completo da fonteShen, Aili, Bahar Salehi, Jianzhong Qi e Timothy Baldwin. "A General Approach to Multimodal Document Quality Assessment". Journal of Artificial Intelligence Research 68 (22 de julho de 2020): 607–32. http://dx.doi.org/10.1613/jair.1.11647.
Texto completo da fonteTseng, Shao-Yen, Shrikanth Narayanan e Panayiotis Georgiou. "Multimodal Embeddings From Language Models for Emotion Recognition in the Wild". IEEE Signal Processing Letters 28 (2021): 608–12. http://dx.doi.org/10.1109/lsp.2021.3065598.
Texto completo da fonteJing, Xuebin, Liang He, Zhida Song e Shaolei Wang. "Audio–Visual Fusion Based on Interactive Attention for Person Verification". Sensors 23, n.º 24 (15 de dezembro de 2023): 9845. http://dx.doi.org/10.3390/s23249845.
Texto completo da fonteSalin, Emmanuelle, Badreddine Farah, Stéphane Ayache e Benoit Favre. "Are Vision-Language Transformers Learning Multimodal Representations? A Probing Perspective". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 10 (28 de junho de 2022): 11248–57. http://dx.doi.org/10.1609/aaai.v36i10.21375.
Texto completo da fonteSkantze, Gabriel, e Bram Willemsen. "CoLLIE: Continual Learning of Language Grounding from Language-Image Embeddings". Journal of Artificial Intelligence Research 74 (9 de julho de 2022): 1201–23. http://dx.doi.org/10.1613/jair.1.13689.
Texto completo da fonteWang, Jenq-Haur, Mehdi Norouzi e Shu Ming Tsai. "Augmenting Multimodal Content Representation with Transformers for Misinformation Detection". Big Data and Cognitive Computing 8, n.º 10 (11 de outubro de 2024): 134. http://dx.doi.org/10.3390/bdcc8100134.
Texto completo da fonteKang, Yu, Tianqiao Liu, Hang Li, Yang Hao e Wenbiao Ding. "Self-Supervised Audio-and-Text Pre-training with Extremely Low-Resource Parallel Data". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 10 (28 de junho de 2022): 10875–83. http://dx.doi.org/10.1609/aaai.v36i10.21334.
Texto completo da fonteYang, Bang, Yong Dai, Xuxin Cheng, Yaowei Li, Asif Raza e Yuexian Zou. "Embracing Language Inclusivity and Diversity in CLIP through Continual Language Learning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 6 (24 de março de 2024): 6458–66. http://dx.doi.org/10.1609/aaai.v38i6.28466.
Texto completo da fonteWang, Fengjun, Sarai Mizrachi, Moran Beladev, Guy Nadav, Gil Amsalem, Karen Lastmann Assaraf e Hadas Harush Boker. "MuMIC – Multimodal Embedding for Multi-Label Image Classification with Tempered Sigmoid". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 13 (26 de junho de 2023): 15603–11. http://dx.doi.org/10.1609/aaai.v37i13.26850.
Texto completo da fonteNikzad-Khasmakhi, N., M. A. Balafar, M. Reza Feizi-Derakhshi e Cina Motamed. "BERTERS: Multimodal representation learning for expert recommendation system with transformers and graph embeddings". Chaos, Solitons & Fractals 151 (outubro de 2021): 111260. http://dx.doi.org/10.1016/j.chaos.2021.111260.
Texto completo da fonteLiu, Hao, Ting Li, Renjun Hu, Yanjie Fu, Jingjing Gu e Hui Xiong. "Joint Representation Learning for Multi-Modal Transportation Recommendation". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julho de 2019): 1036–43. http://dx.doi.org/10.1609/aaai.v33i01.33011036.
Texto completo da fonteChen, Guang, Fangxiang Feng, Guangwei Zhang, Xiaoxu Li e Ruifan Li. "A Visually Enhanced Neural Encoder for Synset Induction". Electronics 12, n.º 16 (20 de agosto de 2023): 3521. http://dx.doi.org/10.3390/electronics12163521.
Texto completo da fonteXu, Xing, Jialin Tian, Kaiyi Lin, Huimin Lu, Jie Shao e Heng Tao Shen. "Zero-shot Cross-modal Retrieval by Assembling AutoEncoder and Generative Adversarial Network". ACM Transactions on Multimedia Computing, Communications, and Applications 17, n.º 1s (31 de março de 2021): 1–17. http://dx.doi.org/10.1145/3424341.
Texto completo da fonteAnitha Mummireddygari e N Ananda Reddy. "Optimizing Speaker Recognition in Complex Environments : An Enhanced Framework with Artificial Neural Networks for Multi-Speaker Settings". International Journal of Scientific Research in Computer Science, Engineering and Information Technology 10, n.º 3 (28 de maio de 2024): 387–98. http://dx.doi.org/10.32628/cseit24103116.
Texto completo da fonteD.S. Rao, Rakhi Madhukararao Joshi,. "Multi-camera Vehicle Tracking and Recognition with Multimodal Contrastive Domain Sharing GAN and Topological Embeddings". Journal of Electrical Systems 20, n.º 2s (4 de abril de 2024): 675–86. http://dx.doi.org/10.52783/jes.1532.
Texto completo da fonteKim, MinJun, SeungWoo Song, YouHan Lee, Haneol Jang e KyungTae Lim. "BOK-VQA: Bilingual outside Knowledge-Based Visual Question Answering via Graph Representation Pretraining". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 16 (24 de março de 2024): 18381–89. http://dx.doi.org/10.1609/aaai.v38i16.29798.
Texto completo da fonteAlam, Mohammad Arif Ul. "College Student Retention Risk Analysis from Educational Database Using Multi-Task Multi-Modal Neural Fusion". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 11 (28 de junho de 2022): 12689–97. http://dx.doi.org/10.1609/aaai.v36i11.21545.
Texto completo da fonteZhang, Ruochi, Tianming Zhou e Jian Ma. "Multiscale and integrative single-cell Hi-C analysis with Higashi". Nature Biotechnology 40, n.º 2 (11 de outubro de 2021): 254–61. http://dx.doi.org/10.1038/s41587-021-01034-y.
Texto completo da fonteLiang, Meiyu, Junping Du, Zhengyang Liang, Yongwang Xing, Wei Huang e Zhe Xue. "Self-Supervised Multi-Modal Knowledge Graph Contrastive Hashing for Cross-Modal Search". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 12 (24 de março de 2024): 13744–53. http://dx.doi.org/10.1609/aaai.v38i12.29280.
Texto completo da fonteZhang, Litian, Xiaoming Zhang, Ziyi Zhou, Feiran Huang e Chaozhuo Li. "Reinforced Adaptive Knowledge Learning for Multimodal Fake News Detection". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 15 (24 de março de 2024): 16777–85. http://dx.doi.org/10.1609/aaai.v38i15.29618.
Texto completo da fonteFaizabadi, Ahmed Rimaz, Hasan Firdaus Mohd Zaki, Zulkifli Zainal Abidin, Muhammad Afif Husman e Nik Nur Wahidah Nik Hashim. "Learning a Multimodal 3D Face Embedding for Robust RGBD Face Recognition". Journal of Integrated and Advanced Engineering (JIAE) 3, n.º 1 (9 de março de 2023): 37–46. http://dx.doi.org/10.51662/jiae.v3i1.84.
Texto completo da fonteBenzinho, José, João Ferreira, Joel Batista, Leandro Pereira, Marisa Maximiano, Vítor Távora, Ricardo Gomes e Orlando Remédios. "LLM Based Chatbot for Farm-to-Fork Blockchain Traceability Platform". Applied Sciences 14, n.º 19 (2 de outubro de 2024): 8856. http://dx.doi.org/10.3390/app14198856.
Texto completo da fonteLiu, Xinyi, Bo Peng, Meiliu Wu, Mingshu Wang, Heng Cai e Qunying Huang. "Occupation Prediction with Multimodal Learning from Tweet Messages and Google Street View Images". AGILE: GIScience Series 5 (30 de maio de 2024): 1–6. http://dx.doi.org/10.5194/agile-giss-5-36-2024.
Texto completo da fonteSun, Jianguo, Hanqi Yin, Ye Tian, Junpeng Wu, Linshan Shen e Lei Chen. "Two-Level Multimodal Fusion for Sentiment Analysis in Public Security". Security and Communication Networks 2021 (3 de junho de 2021): 1–10. http://dx.doi.org/10.1155/2021/6662337.
Texto completo da fonteYuan, Hui, Yuanyuan Tang, Wei Xu e Raymond Yiu Keung Lau. "Exploring the influence of multimodal social media data on stock performance: an empirical perspective and analysis". Internet Research 31, n.º 3 (12 de janeiro de 2021): 871–91. http://dx.doi.org/10.1108/intr-11-2019-0461.
Texto completo da fonteMingote, Victoria, Ignacio Viñals, Pablo Gimeno, Antonio Miguel, Alfonso Ortega e Eduardo Lleida. "Multimodal Diarization Systems by Training Enrollment Models as Identity Representations". Applied Sciences 12, n.º 3 (21 de janeiro de 2022): 1141. http://dx.doi.org/10.3390/app12031141.
Texto completo da fonteKrawczuk, Patrycja, Zachary Fox, Dakota Murdock, Jennifer Doherty, Antoinette Stroupe, Stephen M. Schwartz, Lynne Penberthy et al. "Abstract 2318: Multimodal machine learning for the automatic classification of recurrent cancers". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 2318. http://dx.doi.org/10.1158/1538-7445.am2024-2318.
Texto completo da fonte