Artigos de revistas sobre o tema "Multidrug nanoparticles"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Multidrug nanoparticles".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
& MAHMOOD, HAMID. "THE SYNERGISTIC EFFECT OF GOLD NANOPARTICLE LOADED WITH CEFTAZIDIUM ANTIBIOTIC AGAINST MULTIDRUG ERSISTANCE PSEUDOMONAS AERUGINOSA". IRAQI JOURNAL OF AGRICULTURAL SCIENCES 52, n.º 4 (22 de agosto de 2021): 828–35. http://dx.doi.org/10.36103/ijas.v52i4.1391.
Texto completo da fonteHuq, Md Amdadul, Md Ashrafudoulla, Md Anowar Khasru Parvez, Sri Renukadevi Balusamy, Md Mizanur Rahman, Ji Hyung Kim e Shahina Akter. "Chitosan-Coated Polymeric Silver and Gold Nanoparticles: Biosynthesis, Characterization and Potential Antibacterial Applications: A Review". Polymers 14, n.º 23 (4 de dezembro de 2022): 5302. http://dx.doi.org/10.3390/polym14235302.
Texto completo da fonteShair Mohammad, Imran, Birendra Chaurasiya, Xuan Yang, Chuchu Lin, Hehui Rong e Wei He. "Homotype-Targeted Biogenic Nanoparticles to Kill Multidrug-Resistant Cancer Cells". Pharmaceutics 12, n.º 10 (9 de outubro de 2020): 950. http://dx.doi.org/10.3390/pharmaceutics12100950.
Texto completo da fonteAbd. Alaameri, Sally K., Huda S. A. Al-Hayanni e Labeeb A. K. Al-Zubaidi. "Antibacterial and anti-biofilm properties of biosynthesized Silver nanoparticles using Sumac (Rhus coriaria L.) extracts against some pathogenic bacteria". Sumer 3 8, CSS 3 (15 de outubro de 2023): 1–15. http://dx.doi.org/10.21931/rb/css/2023.08.03.53.
Texto completo da fonteRoszczenko, Piotr, Olga Klaudia Szewczyk, Robert Czarnomysy, Krzysztof Bielawski e Anna Bielawska. "Biosynthesized Gold, Silver, Palladium, Platinum, Copper, and Other Transition Metal Nanoparticles". Pharmaceutics 14, n.º 11 (25 de outubro de 2022): 2286. http://dx.doi.org/10.3390/pharmaceutics14112286.
Texto completo da fonteShrivastava, A., RK Singh, PK Tyagi e D. Gore. "Synthesis of Zinc Oxide, Titanium Dioxide and Magnesium Dioxide Nanoparticles and Their Prospective in Pharmaceutical and Biotechnological Applications". Journal of Biomedical Research & Environmental Sciences 2, n.º 1 (11 de janeiro de 2021): 011–20. http://dx.doi.org/10.37871/jbres1180.
Texto completo da fonteZaineb, Tayyaba, Bushra Uzair, Waleed Y. Rizg, Waleed S. Alharbi, Hala M. Alkhalidi, Khaled M. Hosny, Barkat Ali Khan, Asma Bano, Mohammed Alissa e Nazia Jamil. "Synthesis and Characterization of Calcium Alginate-Based Microspheres Entrapped with TiO2 Nanoparticles and Cinnamon Essential Oil Targeting Clinical Staphylococcus aureus". Pharmaceutics 14, n.º 12 (9 de dezembro de 2022): 2764. http://dx.doi.org/10.3390/pharmaceutics14122764.
Texto completo da fonteAbdelhamid, Mohamed A. A., Mi-Ran Ki, Amer Ali Abd Abd El-Hafeez, Ryeo Gang Son e Seung Pil Pack. "Tailored Functionalized Protein Nanocarriers for Cancer Therapy: Recent Developments and Prospects". Pharmaceutics 15, n.º 1 (3 de janeiro de 2023): 168. http://dx.doi.org/10.3390/pharmaceutics15010168.
Texto completo da fonteAhmed, Faraidun A., Khadijakhalil M. Barzani e Payman A. Hamasaeed. "Antibacterial and Wound Healing Assessment of Silver Nanoparticles against Multidrug-Resistant Klebsiella variicola". Cihan University-Erbil Scientific Journal 8, n.º 2 (20 de agosto de 2024): 49–55. http://dx.doi.org/10.24086/cuesj.v8n2y2024.pp49-55.
Texto completo da fonteChidambaram, Moorthi, R. Manavalan e K. Kathiresan. "Nanotherapeutics to Overcome Conventional Cancer Chemotherapy Limitations". Journal of Pharmacy & Pharmaceutical Sciences 14, n.º 1 (16 de fevereiro de 2011): 67. http://dx.doi.org/10.18433/j30c7d.
Texto completo da fonteBobai, M., L. Danjuma e N. M. Sani. "In vitro antibacterial activity of biologically synthesised silver nanoparticles using Terminalia avicenoides extracts against multidrug resistant Staphylococcus aureus strains". Journal of Phytopharmacology 11, n.º 2 (10 de abril de 2022): 64–74. http://dx.doi.org/10.31254/phyto.2022.11203.
Texto completo da fonteEl Semary, Nermin A., e Esam M. Bakir. "Multidrug-Resistant Bacterial Pathogens and Public Health: The Antimicrobial Effect of Cyanobacterial-Biosynthesized Silver Nanoparticles". Antibiotics 11, n.º 8 (26 de julho de 2022): 1003. http://dx.doi.org/10.3390/antibiotics11081003.
Texto completo da fonteShaikh, Ahson Jabbar, Nargis Aman e Muhammad Arfat Yameen. "A new methodology for simultaneous comparison and optimization between nanoparticles and their drug conjugates against various multidrug-resistant bacterial strains". Asian Biomedicine 13, n.º 4 (31 de março de 2020): 149–62. http://dx.doi.org/10.1515/abm-2019-0054.
Texto completo da fonteDormont, Flavio, Romain Brusini, Catherine Cailleau, Franceline Reynaud, Arnaud Peramo, Amandine Gendron, Julie Mougin, Françoise Gaudin, Mariana Varna e Patrick Couvreur. "Squalene-based multidrug nanoparticles for improved mitigation of uncontrolled inflammation in rodents". Science Advances 6, n.º 23 (27 de abril de 2020): eaaz5466. http://dx.doi.org/10.1126/sciadv.aaz5466.
Texto completo da fonteKhan, Muhammad Muzamil, e Vladimir P. Torchilin. "Recent Trends in Nanomedicine-Based Strategies to Overcome Multidrug Resistance in Tumors". Cancers 14, n.º 17 (26 de agosto de 2022): 4123. http://dx.doi.org/10.3390/cancers14174123.
Texto completo da fonteAghamiri, Shahin, Keyvan Fallah Mehrjardi, Sasan Shabani, Mahsa Keshavarz-Fathi, Saeed Kargar e Nima Rezaei. "Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy?" Nanomedicine 14, n.º 15 (agosto de 2019): 2083–100. http://dx.doi.org/10.2217/nnm-2018-0379.
Texto completo da fonteNikhil, Vadlamudi, Ayla Sanjay, Mohammad Aftab Khizer, Mohd Asif, Syed Shah MinAllah Alvi e Chand Pasha. "Green Synthesis of Nanomaterials with Phytochemicals for Treating Multidrug Resistant Bacteria". Journal of Advances in Biology & Biotechnology 27, n.º 9 (5 de setembro de 2024): 1152–61. http://dx.doi.org/10.9734/jabb/2024/v27i91386.
Texto completo da fonteNuti, Silvia, Adrián Fernández-Lodeiro, Joana Galhano, Elisabete Oliveira, Maria Paula Duarte, José Luis Capelo-Martínez, Carlos Lodeiro e Javier Fernández-Lodeiro. "Tailoring Mesoporous Silica-Coated Silver Nanoparticles and Polyurethane-Doped Films for Enhanced Antimicrobial Applications". Nanomaterials 14, n.º 5 (2 de março de 2024): 462. http://dx.doi.org/10.3390/nano14050462.
Texto completo da fonteHemmati, Jaber, Mehdi Azizi, Babak Asghari e Mohammad Reza Arabestani. "Multidrug-Resistant Pathogens in Burn Wound, Prevention, Diagnosis, and Therapeutic Approaches (Conventional Antimicrobials and Nanoparticles)". Canadian Journal of Infectious Diseases and Medical Microbiology 2023 (22 de julho de 2023): 1–17. http://dx.doi.org/10.1155/2023/8854311.
Texto completo da fonteAlnashiri, Hassien M., Fahad M. Aldakheel, Abdulkarim S. Binshaya, Nahed S. Alharthi e Musthaq Ahmed. "Antimicrobial Analysis of Biosynthesized Lectin-Conjugated Gold Nanoparticles". Adsorption Science & Technology 2022 (31 de março de 2022): 1–7. http://dx.doi.org/10.1155/2022/8187260.
Texto completo da fonteNiño-Martínez, Nereyda, Marco Felipe Salas Orozco, Gabriel-Alejandro Martínez-Castañón, Fernando Torres Méndez e Facundo Ruiz. "Molecular Mechanisms of Bacterial Resistance to Metal and Metal Oxide Nanoparticles". International Journal of Molecular Sciences 20, n.º 11 (8 de junho de 2019): 2808. http://dx.doi.org/10.3390/ijms20112808.
Texto completo da fonteHayat, Palwasha, Ibrar Khan, Aneela Rehman, Tayyaba Jamil, Azam Hayat, Mujaddad Ur Rehman, Najeeb Ullah et al. "Myogenesis and Analysis of Antimicrobial Potential of Silver Nanoparticles (AgNPs) against Pathogenic Bacteria". Molecules 28, n.º 2 (7 de janeiro de 2023): 637. http://dx.doi.org/10.3390/molecules28020637.
Texto completo da fonteHan, Ning, Yue Liu, Xin Liu, Pengyue Li, Yang Lu, Shouying Du e Kai Wu. "The Controlled Preparation of a Carrier-Free Nanoparticulate Formulation Composed of Curcumin and Piperine Using High-Gravity Technology". Pharmaceutics 16, n.º 6 (14 de junho de 2024): 808. http://dx.doi.org/10.3390/pharmaceutics16060808.
Texto completo da fonteChen, Jiacheng, Xiaojing Chen, Liang Chen, Xiangxiang Luo, Chunyu Zhuang e Jincai Wu. "Drug resistance reversal and survivin action mechanism of Fe3O4 magnetic nanoparticles on hepatocellular carcinoma cells". Materials Express 12, n.º 9 (1 de setembro de 2022): 1174–81. http://dx.doi.org/10.1166/mex.2022.2260.
Texto completo da fonteShawuti, Shalima, Chasan Bairam, Ahmet Beyatlı, İshak Afşin Kariper, Isık Neslişah Korkut, Zerrin Aktaş, Mustafa Oral Öncül e Serap Erdem Kuruca. "Green synthesis and characterization of silver and iron nanoparticles using Nerium oleander extracts and their antibacterial and anticancer activities". Plant Introduction 91-92 (28 de novembro de 2021): 36–49. http://dx.doi.org/10.46341/pi2021010.
Texto completo da fonteImran, Mohammad, Saurav Kumar Jha, Nazeer Hasan, Areeba Insaf, Jitendra Shrestha, Jesus Shrestha, Hari Prasad Devkota et al. "Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems". Pharmaceutics 14, n.º 3 (8 de março de 2022): 586. http://dx.doi.org/10.3390/pharmaceutics14030586.
Texto completo da fonteHetta, Helal F., Yasmin N. Ramadan, Israa M. S. Al-Kadmy, Noura H. Abd Ellah, Lama Shbibe e Basem Battah. "Nanotechnology-Based Strategies to Combat Multidrug-Resistant Candida auris Infections". Pathogens 12, n.º 8 (13 de agosto de 2023): 1033. http://dx.doi.org/10.3390/pathogens12081033.
Texto completo da fontePieretti, Joana Claudio, Milena Trevisan Pelegrino, Ariane Boudier e Amedea Barozzi Seabra. "Recent progress in the toxicity of nitric oxide-releasing nanomaterials". Materials Advances 2, n.º 23 (2021): 7530–42. http://dx.doi.org/10.1039/d1ma00532d.
Texto completo da fonteBrowning, Lauren M., Kerry J. Lee, Pavan K. Cherukuri, Prakash D. Nallathamby, Seth Warren, Jean-Michel Jault e Xiao-Hong Nancy Xu. "Single nanoparticle plasmonic spectroscopy for study of the efflux function of multidrug ABC membrane transporters of single live cells". RSC Advances 6, n.º 43 (2016): 36794–802. http://dx.doi.org/10.1039/c6ra05895g.
Texto completo da fonteHuang, Jianling, Xiuwen Hong, Yunxiang Lv, Yueyue Wang, Kexing Han, Chenghua Zhu e Lixu Xie. "Armored polymyxin B: a nanosystem for combating multidrug-resistant Gram-negative bacilli". RSC Advances 14, n.º 53 (2024): 39700–39707. https://doi.org/10.1039/d4ra07577c.
Texto completo da fonteChen, Minghui, Xiaoxu Yu, Qianyu Huo, Qin Yuan, Xue Li, Chen Xu e Huijing Bao. "Biomedical Potentialities of Silver Nanoparticles for Clinical Multiple Drug-Resistant Acinetobacter baumannii". Journal of Nanomaterials 2019 (4 de fevereiro de 2019): 1–7. http://dx.doi.org/10.1155/2019/3754018.
Texto completo da fonteLi, Wenxi, Yongchun Li, Pengchao Sun, Nan Zhang, Yidan Zhao, Shangshang Qin e Yongxing Zhao. "Antimicrobial peptide-modified silver nanoparticles for enhancing the antibacterial efficacy". RSC Advances 10, n.º 64 (2020): 38746–54. http://dx.doi.org/10.1039/d0ra05640e.
Texto completo da fonteFeng, Wanting, Mingzhu Zong, Li Wan, Xiaojuan Yu e Weiyong Yu. "pH/redox sequentially responsive nanoparticles with size shrinkage properties achieve deep tumor penetration and reversal of multidrug resistance". Biomaterials Science 8, n.º 17 (2020): 4767–78. http://dx.doi.org/10.1039/d0bm00695e.
Texto completo da fonteWang, Jianxi, Ning Li, Lei Cao, Chao Gao, Yan Zhang, Qizhi Shuai, Jinghui Xie, Kui Luo, Jun Yang e Zhongwei Gu. "DOX-loaded peptide dendritic copolymer nanoparticles for combating multidrug resistance by regulating the lysosomal pathway of apoptosis in breast cancer cells". Journal of Materials Chemistry B 8, n.º 6 (2020): 1157–70. http://dx.doi.org/10.1039/c9tb02130b.
Texto completo da fontePawar, Kranti, Ramanlal Kachave, Madhuri Kanawade e Vinayak Zagre. "A Review on Nanoparticles Drug Delivery System". Journal of Drug Delivery and Therapeutics 11, n.º 4 (15 de julho de 2021): 101–4. http://dx.doi.org/10.22270/jddt.v11i4.4865.
Texto completo da fonteBeyth, Nurit, Yael Houri-Haddad, Avi Domb, Wahid Khan e Ronen Hazan. "Alternative Antimicrobial Approach: Nano-Antimicrobial Materials". Evidence-Based Complementary and Alternative Medicine 2015 (2015): 1–16. http://dx.doi.org/10.1155/2015/246012.
Texto completo da fonteMajerník, Martin, Rastislav Jendželovský, Jana Vargová, Zuzana Jendželovská e Peter Fedoročko. "Multifunctional Nanoplatforms as a Novel Effective Approach in Photodynamic Therapy and Chemotherapy, to Overcome Multidrug Resistance in Cancer". Pharmaceutics 14, n.º 5 (17 de maio de 2022): 1075. http://dx.doi.org/10.3390/pharmaceutics14051075.
Texto completo da fonteNisha D. Masane, Arti S. Rathod, Vaibhav G. Akhand, Vinayak A. Katekar e Swati P. Deshmukh. "Nanoparticles based drug delivery system for cancer therapy". GSC Advanced Research and Reviews 22, n.º 1 (30 de janeiro de 2025): 223–37. https://doi.org/10.30574/gscarr.2025.22.1.0014.
Texto completo da fonteManoharan, Ranjith Kumar, Prakash Gangadaran, Sivasankaran Ayyaru, Byeong-Cheol Ahn e Young-Ho Ahn. "Self-healing functionalization of sulfonated hafnium oxide and copper oxide nanocomposite for effective biocidal control of multidrug-resistant bacteria". New Journal of Chemistry 45, n.º 21 (2021): 9506–17. http://dx.doi.org/10.1039/d1nj00323b.
Texto completo da fonteZeng, Guoqing, Nan Liao, Ning Li, Yi Su e Jiangshun Song. "Curcumin-loaded nanoparticles reversed radiotherapy-triggered enhancement of MDR1 expression of CNE-2 cells in nasopharyngeal carcinoma". Materials Express 12, n.º 7 (1 de julho de 2022): 948–55. http://dx.doi.org/10.1166/mex.2022.2222.
Texto completo da fonteSlavin, Yael N., Kristina Ivanova, Javier Hoyo, Ilana Perelshtein, Gethin Owen, Anne Haegert, Yen-Yi Lin et al. "Novel Lignin-Capped Silver Nanoparticles against Multidrug-Resistant Bacteria". ACS Applied Materials & Interfaces 13, n.º 19 (4 de maio de 2021): 22098–109. http://dx.doi.org/10.1021/acsami.0c16921.
Texto completo da fonteZhang, Qiu, e Fei Li. "Combating P-glycoprotein-Mediated Multidrug Resistance Using Therapeutic Nanoparticles". Current Pharmaceutical Design 19, n.º 37 (1 de setembro de 2013): 6655–66. http://dx.doi.org/10.2174/1381612811319370009.
Texto completo da fonteHanh, Truong Thi, Nguyen Thi Thu, Nguyen Quoc Hien, Pham Ngoc An, Truong Thi Kieu Loan e Phan Thi Hoa. "Preparation of silver nanoparticles fabrics against multidrug-resistant bacteria". Radiation Physics and Chemistry 121 (abril de 2016): 87–92. http://dx.doi.org/10.1016/j.radphyschem.2015.12.024.
Texto completo da fonteBaeza, Alejandro, Eduardo Guisasola, Eduardo Ruiz-Hernández e María Vallet-Regí. "Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles". Chemistry of Materials 24, n.º 3 (27 de janeiro de 2012): 517–24. http://dx.doi.org/10.1021/cm203000u.
Texto completo da fonteRai, M. K., S. D. Deshmukh, A. P. Ingle e A. K. Gade. "Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria". Journal of Applied Microbiology 112, n.º 5 (28 de março de 2012): 841–52. http://dx.doi.org/10.1111/j.1365-2672.2012.05253.x.
Texto completo da fonteLara, Humberto H., Nilda V. Ayala-Núñez, Liliana del Carmen Ixtepan Turrent e Cristina Rodríguez Padilla. "Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria". World Journal of Microbiology and Biotechnology 26, n.º 4 (22 de outubro de 2009): 615–21. http://dx.doi.org/10.1007/s11274-009-0211-3.
Texto completo da fonteDoudi, Monir, Marziyeh Karami e Nour Amirmozafari. "Bacterial effect of silver nanoparticles against multidrug-resistant bacteria". Clinical Biochemistry 44, n.º 13 (setembro de 2011): S223. http://dx.doi.org/10.1016/j.clinbiochem.2011.08.984.
Texto completo da fontePancholi, Rashmi. "Different Aspects of Nano-material and Biodegradable Polymers for Cancer Diagnosis and Treatment: A Review". INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING & APPLIED SCIENCES 10, n.º 4 (30 de dezembro de 2022): 30–42. http://dx.doi.org/10.55083/irjeas.2022.v10i04006.
Texto completo da fonteFoglizzo, Valentina, e Serena Marchiò. "Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy". Cancers 14, n.º 10 (17 de maio de 2022): 2473. http://dx.doi.org/10.3390/cancers14102473.
Texto completo da fonteLv, Xianmei, Qiusheng Guo e Liming Xu. "Study on the Chemotherapeutic Effect and Mechanism of Doxorubicin Hydrochloride on Drug-Resistant Gastric Cancer Cell Lines Using Metal-Organic Framework Fluorescent Nanoparticles as Carriers". Journal of Nanomaterials 2020 (17 de dezembro de 2020): 1–14. http://dx.doi.org/10.1155/2020/6681749.
Texto completo da fonte