Literatura científica selecionada sobre o tema "Multi-stain segmentation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Multi-stain segmentation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Multi-stain segmentation"
Hassan, Loay, Mohamed Abdel-Nasser, Adel Saleh, Osama A. Omer e Domenec Puig. "Efficient Stain-Aware Nuclei Segmentation Deep Learning Framework for Multi-Center Histopathological Images". Electronics 10, n.º 8 (16 de abril de 2021): 954. http://dx.doi.org/10.3390/electronics10080954.
Texto completo da fonteAbdel-Nasser, Mohamed, Vivek Kumar Singh e Ehab Mahmoud Mohamed. "Efficient Staining-Invariant Nuclei Segmentation Approach Using Self-Supervised Deep Contrastive Network". Diagnostics 12, n.º 12 (2 de dezembro de 2022): 3024. http://dx.doi.org/10.3390/diagnostics12123024.
Texto completo da fonteXu, Xiaoping, Meirong Ji, Bobin Chen e Guowei Lin. "Analysis on Characteristics of Dysplasia in 345 Patients with Myelodysplastic Syndrome". Blood 112, n.º 11 (16 de novembro de 2008): 5100. http://dx.doi.org/10.1182/blood.v112.11.5100.5100.
Texto completo da fonteAlvarsson, Alexandra, Carl Storey, Brandy Olin Pope, Caleb Stoltzfus, Robert Vierkant, Jessica Tufariello, Aaron Bungum et al. "Abstract 6624: 3D assessment of the lung cancer microenvironment using multi-resolution open-top light-sheet microscopy". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 6624. http://dx.doi.org/10.1158/1538-7445.am2023-6624.
Texto completo da fonteSchuerch, Christian, Graham L. Barlow, Salil S. Bhate, Nikolay Samusik, Garry P. Nolan e Yury Goltsev. "Dynamics of the Bone Marrow Microenvironment during Leukemic Progression Revealed By Codex Hyper-Parameter Tissue Imaging". Blood 132, Supplement 1 (29 de novembro de 2018): 935. http://dx.doi.org/10.1182/blood-2018-99-111708.
Texto completo da fonteWarr, Ryan, Stephan Handschuh, Martin Glösmann, Robert J. Cernik e Philip J. Withers. "Quantifying multiple stain distributions in bioimaging by hyperspectral X-ray tomography". Scientific Reports 12, n.º 1 (19 de dezembro de 2022). http://dx.doi.org/10.1038/s41598-022-23592-0.
Texto completo da fonteGour, Mahesh, Sweta Jain e T. Sunil Kumar. "Robust nuclei segmentation with encoder‐decoder network from the histopathological images". International Journal of Imaging Systems and Technology 34, n.º 4 (30 de maio de 2024). http://dx.doi.org/10.1002/ima.23111.
Texto completo da fonteHuang, Zhi, Wei Shao, Zhi Han, Ahmad Mahmoud Alkashash, Carlo De la Sancha, Anil V. Parwani, Hiroaki Nitta et al. "Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images". npj Precision Oncology 7, n.º 1 (27 de janeiro de 2023). http://dx.doi.org/10.1038/s41698-023-00352-5.
Texto completo da fonteCazzaniga, Giorgio, Mattia Rossi, Albino Eccher, Ilaria Girolami, Vincenzo L’Imperio, Hien Van Nguyen, Jan Ulrich Becker et al. "Time for a full digital approach in nephropathology: a systematic review of current artificial intelligence applications and future directions". Journal of Nephrology, 28 de setembro de 2023. http://dx.doi.org/10.1007/s40620-023-01775-w.
Texto completo da fonteWarr, Ryan, Evelina Ametova, Robert J. Cernik, Gemma Fardell, Stephan Handschuh, Jakob S. Jørgensen, Evangelos Papoutsellis, Edoardo Pasca e Philip J. Withers. "Enhanced hyperspectral tomography for bioimaging by spatiospectral reconstruction". Scientific Reports 11, n.º 1 (21 de outubro de 2021). http://dx.doi.org/10.1038/s41598-021-00146-4.
Texto completo da fonteTeses / dissertações sobre o assunto "Multi-stain segmentation"
Nisar, Zeeshan. "Self-supervised learning in the presence of limited labelled data for digital histopathology". Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD016.
Texto completo da fonteA key challenge in applying deep learning to histopathology is the variation in stainings, both inter and intra-stain. Deep learning models trained on one stain (or domain) often fail on others, even for the same task (e.g., kidney glomeruli segmentation). Labelling each stain is expensive and time-consuming, prompting researchers to explore domain adaptation based stain-transfer methods. These aim to perform multi-stain segmentation using labels from only one stain but are limited by the introduction of domain shift, reducing performance. Detecting and quantifying this domain shift is important. This thesis focuses on unsupervised methods to develop a metric for detecting domain shift and proposes a novel stain-transfer approach to minimise it. While multi-stain algorithms reduce the need for labels in target stains, they may struggle with tissue types lacking source-stain labels. To address this, the thesis focuses to improve multi-stain segmentation with less reliance on labelled data using self-supervision. While this thesis focused on kidney glomeruli segmentation, the proposed methods are designed to be applicable to other histopathology tasks and domains, including medical imaging and computer vision
Capítulos de livros sobre o assunto "Multi-stain segmentation"
Taixé, L. Leal, A. U. Coskun, B. Rosenhahn e D. H. Brooks. "Automatic Segmentation of Arteries in Multi-stain Histology Images". In IFMBE Proceedings, 2000–2003. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03882-2_531.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Multi-stain segmentation"
Wang, Ruochan, e Sei-ichiro Kamata. "Stain-Refinement and Boundary-Enhancement Weight Maps for Multi-organ Nuclei Segmentation". In 2020 Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR). IEEE, 2020. http://dx.doi.org/10.1109/icievicivpr48672.2020.9306586.
Texto completo da fonteWang, Ruochan, e Sei-ichiro Kamata. "Stain-Refinement and Boundary-Enhancement Weight Maps for Multi-organ Nuclei Segmentation". In 2020 Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR). IEEE, 2020. http://dx.doi.org/10.1109/icievicivpr48672.2020.9306586.
Texto completo da fonteGraham, S., e N. M. Rajpoot. "SAMS-NET: Stain-aware multi-scale network for instance-based nuclei segmentation in histology images". In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018. http://dx.doi.org/10.1109/isbi.2018.8363645.
Texto completo da fonte