Literatura científica selecionada sobre o tema "Multi-Robot task allocation (MRTA)"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Multi-Robot task allocation (MRTA)".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Multi-Robot task allocation (MRTA)"
Li, Ping, e Jun Yan Zhu. "The Application of Game Theory in RoboCup Soccer Game". Applied Mechanics and Materials 530-531 (fevereiro de 2014): 1053–57. http://dx.doi.org/10.4028/www.scientific.net/amm.530-531.1053.
Texto completo da fonteGul, Omer Melih. "Energy Harvesting and Task-Aware Multi-Robot Task Allocation in Robotic Wireless Sensor Networks". Sensors 23, n.º 6 (20 de março de 2023): 3284. http://dx.doi.org/10.3390/s23063284.
Texto completo da fonteArif, Muhammad Usman, e Sajjad Haider. "A Flexible Framework for Diverse Multi-Robot Task Allocation Scenarios Including Multi-Tasking". ACM Transactions on Autonomous and Adaptive Systems 16, n.º 1 (31 de março de 2021): 1–23. http://dx.doi.org/10.1145/3502200.
Texto completo da fonteYuan, Ruiping, Jiangtao Dou, Juntao Li, Wei Wang e Yingfan Jiang. "Multi-robot task allocation in e-commerce RMFS based on deep reinforcement learning". Mathematical Biosciences and Engineering 20, n.º 2 (2022): 1903–18. http://dx.doi.org/10.3934/mbe.2023087.
Texto completo da fonteMartin, J. G., J. R. D. Frejo, R. A. García e E. F. Camacho. "Multi-robot task allocation problem with multiple nonlinear criteria using branch and bound and genetic algorithms". Intelligent Service Robotics 14, n.º 5 (novembro de 2021): 707–27. http://dx.doi.org/10.1007/s11370-021-00393-4.
Texto completo da fonteZhao, Donghui, Chenhao Yang, Tianqi Zhang, Junyou Yang e Yokoi Hiroshi. "A Task Allocation Approach of Multi-Heterogeneous Robot System for Elderly Care". Machines 10, n.º 8 (28 de julho de 2022): 622. http://dx.doi.org/10.3390/machines10080622.
Texto completo da fonteElfakharany, Ahmed, e Zool Hilmi Ismail. "End-to-End Deep Reinforcement Learning for Decentralized Task Allocation and Navigation for a Multi-Robot System". Applied Sciences 11, n.º 7 (24 de março de 2021): 2895. http://dx.doi.org/10.3390/app11072895.
Texto completo da fonteHong, Le, Weicheng Cui e Hao Chen. "A Novel Multi-Robot Task Allocation Model in Marine Plastics Cleaning Based on Replicator Dynamics". Journal of Marine Science and Engineering 9, n.º 8 (14 de agosto de 2021): 879. http://dx.doi.org/10.3390/jmse9080879.
Texto completo da fonteZhang, Zhenqiang, Sile Ma e Xiangyuan Jiang. "Research on Multi-Objective Multi-Robot Task Allocation by Lin–Kernighan–Helsgaun Guided Evolutionary Algorithms". Mathematics 10, n.º 24 (12 de dezembro de 2022): 4714. http://dx.doi.org/10.3390/math10244714.
Texto completo da fonteGautier, Paul, e Johann Laurent. "DQN as an alternative to Market-based approaches for Multi-Robot processing Task Allocation (MRpTA)". International Journal of Robotic Computing 3, n.º 1 (1 de maio de 2021): 69–98. http://dx.doi.org/10.35708/rc1870-126266.
Texto completo da fonteTeses / dissertações sobre o assunto "Multi-Robot task allocation (MRTA)"
Chakraa, Hamza. "Οptimisatiοn techniques fοr mοnitοring a high-risk industrial area by a team οf autοnοmοus mοbile rοbοts". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH29.
Texto completo da fonteThis thesis explores the development and implementation of optimisation algorithms for monitoring industrial areas using a team of autonomous mobile robots. The research focuses on Multi-Robot Task Allocation (MRTA), where a near-optimal mission plan must be generated. A novel model considering heterogeneous robots and tasks is proposed, using Genetic Algorithms (GA) and 2-Opt local search methods to solve the problem. The thesis also integrates collision avoidance strategies, which become necessary when there are many robots and tasks. A low-level local solution handles many conflict situations during the mission, which can cause delays. Therefore, a solution for this case was proposed using clustering. Furthermore, we evaluate the proposed solutions through real-world experiments including a navigation-based algorithm that addresses collision issues. The results demonstrate the value of these algorithms in optimising task allocation and path planning for autonomous mobile robots in industrial settings, paving the way for more efficient mission planning and enhanced safety in industrial environments
Sarker, Md Omar Faruque. "Self-regulated multi-robot task allocation". Thesis, University of South Wales, 2010. https://pure.southwales.ac.uk/en/studentthesis/selfregulated-multirobot-task-allocation(4b92f28f-c712-4e75-955f-97b4e5bf12dd).html.
Texto completo da fonteGage, Aaron. "Multi-robot task allocation using affect". [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000465.
Texto completo da fonteSchneider, E. "Mechanism selection for multi-robot task allocation". Thesis, University of Liverpool, 2018. http://livrepository.liverpool.ac.uk/3018369/.
Texto completo da fonteDas, Gautham Panamoottil. "Task allocation strategies for multi-robot systems". Thesis, Ulster University, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.667759.
Texto completo da fonteSung, Cynthia Rueyi. "Data-driven task allocation for multi-robot deliveries". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84717.
Texto completo da fonteThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 93-97).
In this thesis, we present a distributed task allocation system for a team of robots serving queues of tasks in an environment. We consider how historical information about such a system's performance could be used to improve future allocations. Our model is representative of a multi-robot mail delivery service, in which teams of robots would have to cooperate to pick up and deliver packages in an environment. We provide a framework for task allocation, planning, and control of the system and analyze task switching as a method for improving a task allocation as the system is running. We first treat a system where robots exchange tasks as they encounter each other in the environment. We consider both cases where the number of robots matches the number of task queues being served and where it does not. Most importantly, for situations where an optimal task switching policy would be too computationally expensive, we provide heuristics that nonetheless guarantee task completion. Our simulations show that our heuristics also generally lower the costs of task completion. We incorporate historical data about system performance by looking at a spatial allocation of tasks to robots in the system. We propose an algorithm for partitioning the environment into regions of equal workload for the robots. In order to overcome communication constraints, we introduce hubs, locations where robots can pass tasks to each other. We simulate the system with this additional infrastructure and compare its performance to that without hubs. We find that hubs can significantly improve performance when the task queues themselves follow some spatial structure.
by Cynthia Rueyi Sung.
S.M.
AL-Buraiki, Omar S. M. "Specialized Agents Task Allocation in Autonomous Multi-Robot Systems". Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41504.
Texto completo da fonteKARAMI, HOSSEIN. "Task planning and allocation for multi-agent collaborative robot systems". Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1083925.
Texto completo da fonteSun, Dali [Verfasser], e Bernhard [Akademischer Betreuer] Nebel. "Adaptive task allocation, localization and motion planning for the multi-robot system". Freiburg : Universität, 2017. http://d-nb.info/114157571X/34.
Texto completo da fonteDutia, Dharini. "Multi-Robot Task Allocation and Scheduling with Spatio-Temporal and Energy Constraints". Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-theses/1298.
Texto completo da fonteCapítulos de livros sobre o assunto "Multi-Robot task allocation (MRTA)"
Zitouni, Farouq, e Ramdane Maamri. "FA-SETPOWER-MRTA: A Solution for Solving the Multi-Robot Task Allocation Problem". In Computational Intelligence and Its Applications, 317–28. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89743-1_28.
Texto completo da fonteÖztürk, Savaş, e Ahmet Emin Kuzucuoğlu. "Building a Generic Simulation Model for Analyzing the Feasibility of Multi-Robot Task Allocation (MRTA) Problems". In Modelling and Simulation for Autonomous Systems, 71–87. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43890-6_6.
Texto completo da fonteKoubaa, Anis, Hachemi Bennaceur, Imen Chaari, Sahar Trigui, Adel Ammar, Mohamed-Foued Sriti, Maram Alajlan, Omar Cheikhrouhou e Yasir Javed. "General Background on Multi-robot Task Allocation". In Robot Path Planning and Cooperation, 129–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77042-0_6.
Texto completo da fonteJanati, Farzam, Farzaneh Abdollahi, Saeed Shiry Ghidary, Masoumeh Jannatifar, Jacky Baltes e Soroush Sadeghnejad. "Multi-robot Task Allocation Using Clustering Method". In Advances in Intelligent Systems and Computing, 233–47. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31293-4_19.
Texto completo da fonteSchneider, Eric, Elizabeth I. Sklar e Simon Parsons. "Mechanism Selection for Multi-Robot Task Allocation". In Towards Autonomous Robotic Systems, 421–35. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64107-2_33.
Texto completo da fonteHuang, Chuang, Hao Zhang e Zhuping Wang. "Task Allocation of Multi-robot Coalition Formation". In Proceedings of 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control, 221–30. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3998-3_22.
Texto completo da fonteTuck, Victoria Marie, Pei-Wei Chen, Georgios Fainekos, Bardh Hoxha, Hideki Okamoto, S. Shankar Sastry e Sanjit A. Seshia. "SMT-Based Dynamic Multi-Robot Task Allocation". In Lecture Notes in Computer Science, 331–51. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-60698-4_20.
Texto completo da fonteHawley, John, e Zack Butler. "Hierarchical Distributed Task Allocation for Multi-robot Exploration". In Springer Tracts in Advanced Robotics, 445–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32723-0_32.
Texto completo da fonteMunoz, Francisco, Ashutosh Nayak e Seokcheon Lee. "Task Allocation in Multi-robot Systems—Resource Welfare". In Engineering Applications of Social Welfare Functions, 55–67. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20545-3_5.
Texto completo da fonteAşık, Okan, e H. Levent Akın. "Effective Multi-robot Spatial Task Allocation Using Model Approximations". In RoboCup 2016: Robot World Cup XX, 243–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68792-6_20.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Multi-Robot task allocation (MRTA)"
Kashid, Sujeet, e Ashwin Dharmesh Kumat. "Hierarchically Decentralized Heterogeneous Multi-Robot Task Allocation System". In 2024 7th International Conference on Intelligent Robotics and Control Engineering (IRCE), 143–48. IEEE, 2024. http://dx.doi.org/10.1109/irce62232.2024.10739829.
Texto completo da fonteDhanaraj, Neel, Jeon Ho Kang, Anirban Mukherjee, Heramb Nemlekar, Stefanos Nikolaidis e Satyandra K. Gupta. "Multi-Robot Task Allocation Under Uncertainty Via Hindsight Optimization". In 2024 IEEE International Conference on Robotics and Automation (ICRA), 16574–80. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10611370.
Texto completo da fonteChing-Wei, Chuang, e Lin Wei-Yu. "Task Decomposition and Multi-Robot Task Allocation in Exploration With Bayesian Networks". In 2024 Eighth IEEE International Conference on Robotic Computing (IRC), 80–83. IEEE, 2024. https://doi.org/10.1109/irc63610.2024.00018.
Texto completo da fonteLee, Goeun, Donggil Lee e Yoonseob Lim. "Task Allocation for Heterogeneous Multi-Robot Systems with Diverse Capabilities". In 2024 24th International Conference on Control, Automation and Systems (ICCAS), 1599–600. IEEE, 2024. https://doi.org/10.23919/iccas63016.2024.10773254.
Texto completo da fonteHeppner, Georg, David Oberacker, Arne Roennau e Rüdiger Dillmann. "Behavior Tree Capabilities for Dynamic Multi-Robot Task Allocation with Heterogeneous Robot Teams". In 2024 IEEE International Conference on Robotics and Automation (ICRA), 4826–33. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610515.
Texto completo da fonteCalvo, Álvaro, e Jesús Capitán. "Optimal Task Allocation for Heterogeneous Multi-robot Teams with Battery Constraints". In 2024 IEEE International Conference on Robotics and Automation (ICRA), 7243–49. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10611147.
Texto completo da fonteBaccouche, Chaima, Imen Iben Ammar, Dimitri Lefebvre e Achraf Jabeur Telmoudi. "A preliminary study about multi-robot task allocation with energy constraints". In 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE), 3057–62. IEEE, 2024. http://dx.doi.org/10.1109/case59546.2024.10711402.
Texto completo da fonteDe La Rochefoucauld, Virgile, Simon Lacroix, Photchara Ratsamee e Haruo Takemura. "Solving Multi-Robot Task Allocation and Planning in Trans-media Scenarios". In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 5764–69. IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10801394.
Texto completo da fonteYan, Fuhan, e Kai Di. "Multi-robot Task Allocation in the Environment with Functional Tasks". In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/653.
Texto completo da fonteChuang, Ching-Wei, e Harry H. Cheng. "A Novel Approach With Bayesian Networks to Multi-Robot Task Allocation in Dynamic Environments". In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-66902.
Texto completo da fonteRelatórios de organizações sobre o assunto "Multi-Robot task allocation (MRTA)"
Lerman, Kristina, Chris Jones, Aram Galstyan e Maja J. Mataric. Analysis of Dynamic Task Allocation in Multi-Robot Systems. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2006. http://dx.doi.org/10.21236/ada459067.
Texto completo da fonte