Artigos de revistas sobre o tema "Multi-labels"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Multi-labels".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Lee, Seongmin, Hyunsik Jeon e U. Kang. "Multi-EPL: Accurate multi-source domain adaptation". PLOS ONE 16, n.º 8 (5 de agosto de 2021): e0255754. http://dx.doi.org/10.1371/journal.pone.0255754.
Texto completo da fonteHao, Pingting, Kunpeng Liu e Wanfu Gao. "Double-Layer Hybrid-Label Identification Feature Selection for Multi-View Multi-Label Learning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 11 (24 de março de 2024): 12295–303. http://dx.doi.org/10.1609/aaai.v38i11.29120.
Texto completo da fonteSun, Kai-Wei, Chong Ho Lee e Xiao-Feng Xie. "MLHN: A Hypernetwork Model for Multi-Label Classification". International Journal of Pattern Recognition and Artificial Intelligence 29, n.º 06 (12 de agosto de 2015): 1550020. http://dx.doi.org/10.1142/s0218001415500202.
Texto completo da fonteGuo, Hai-Feng, Lixin Han, Shoubao Su e Zhou-Bao Sun. "Deep Multi-Instance Multi-Label Learning for Image Annotation". International Journal of Pattern Recognition and Artificial Intelligence 32, n.º 03 (22 de novembro de 2017): 1859005. http://dx.doi.org/10.1142/s021800141859005x.
Texto completo da fonteXing, Yuying, Guoxian Yu, Carlotta Domeniconi, Jun Wang, Zili Zhang e Maozu Guo. "Multi-View Multi-Instance Multi-Label Learning Based on Collaborative Matrix Factorization". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julho de 2019): 5508–15. http://dx.doi.org/10.1609/aaai.v33i01.33015508.
Texto completo da fonteLi, Lei, Yuqi Chu, Guanfeng Liu e Xindong Wu. "Multi-Objective Optimization-Based Networked Multi-Label Active Learning". Journal of Database Management 30, n.º 2 (abril de 2019): 1–26. http://dx.doi.org/10.4018/jdm.2019040101.
Texto completo da fonteChen, Tianshui, Tao Pu, Hefeng Wu, Yuan Xie e Liang Lin. "Structured Semantic Transfer for Multi-Label Recognition with Partial Labels". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 1 (28 de junho de 2022): 339–46. http://dx.doi.org/10.1609/aaai.v36i1.19910.
Texto completo da fonteHuang, Jun, Linchuan Xu, Kun Qian, Jing Wang e Kenji Yamanishi. "Multi-label learning with missing and completely unobserved labels". Data Mining and Knowledge Discovery 35, n.º 3 (12 de março de 2021): 1061–86. http://dx.doi.org/10.1007/s10618-021-00743-x.
Texto completo da fonteChen, Ze-Sen, Xuan Wu, Qing-Guo Chen, Yao Hu e Min-Ling Zhang. "Multi-View Partial Multi-Label Learning with Graph-Based Disambiguation". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 3553–60. http://dx.doi.org/10.1609/aaai.v34i04.5761.
Texto completo da fonteHuang, Jun, Haowei Rui, Guorong Li, Xiwen Qu, Tao Tao e Xiao Zheng. "Multi-Label Learning With Hidden Labels". IEEE Access 8 (2020): 29667–76. http://dx.doi.org/10.1109/access.2020.2972599.
Texto completo da fonteTan, Z. M., J. Y. Liu, Q. Li, D. Y. Wang e C. Y. Wang. "An approach to error label discrimination based on joint clustering". Journal of Physics: Conference Series 2294, n.º 1 (1 de junho de 2022): 012018. http://dx.doi.org/10.1088/1742-6596/2294/1/012018.
Texto completo da fonteLiu, Xinda, e Lili Wang. "Multi-granularity sequence generation for hierarchical image classification". Computational Visual Media 10, n.º 2 (3 de janeiro de 2024): 243–60. http://dx.doi.org/10.1007/s41095-022-0332-2.
Texto completo da fonteXie, Ming-Kun, e Sheng-Jun Huang. "Partial Multi-Label Learning with Noisy Label Identification". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 6454–61. http://dx.doi.org/10.1609/aaai.v34i04.6117.
Texto completo da fontePeng, Cheng, Ke Chen, Lidan Shou e Gang Chen. "CARAT: Contrastive Feature Reconstruction and Aggregation for Multi-Modal Multi-Label Emotion Recognition". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 13 (24 de março de 2024): 14581–89. http://dx.doi.org/10.1609/aaai.v38i13.29374.
Texto completo da fonteZhang, Ping, Wanfu Gao, Juncheng Hu e Yonghao Li. "Multi-Label Feature Selection Based on High-Order Label Correlation Assumption". Entropy 22, n.º 7 (21 de julho de 2020): 797. http://dx.doi.org/10.3390/e22070797.
Texto completo da fonteLidén, Mats, Ola Hjelmgren, Jenny Vikgren e Per Thunberg. "Multi-Reader–Multi-Split Annotation of Emphysema in Computed Tomography". Journal of Digital Imaging 33, n.º 5 (10 de agosto de 2020): 1185–93. http://dx.doi.org/10.1007/s10278-020-00378-2.
Texto completo da fonteWu, Xingyu, Bingbing Jiang, Kui Yu, Huanhuan Chen e Chunyan Miao. "Multi-Label Causal Feature Selection". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 6430–37. http://dx.doi.org/10.1609/aaai.v34i04.6114.
Texto completo da fonteFang, Jun-Peng, e Min-Ling Zhang. "Partial Multi-Label Learning via Credible Label Elicitation". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julho de 2019): 3518–25. http://dx.doi.org/10.1609/aaai.v33i01.33013518.
Texto completo da fonteZhu, Yue, Kai Ming Ting e Zhi-Hua Zhou. "Multi-Label Learning with Emerging New Labels". IEEE Transactions on Knowledge and Data Engineering 30, n.º 10 (1 de outubro de 2018): 1901–14. http://dx.doi.org/10.1109/tkde.2018.2810872.
Texto completo da fonteZhu, Pengfei, Qian Xu, Qinghua Hu, Changqing Zhang e Hong Zhao. "Multi-label feature selection with missing labels". Pattern Recognition 74 (fevereiro de 2018): 488–502. http://dx.doi.org/10.1016/j.patcog.2017.09.036.
Texto completo da fonteLin, Yaojin, Qinghua Hu, Jia Zhang e Xindong Wu. "Multi-label feature selection with streaming labels". Information Sciences 372 (dezembro de 2016): 256–75. http://dx.doi.org/10.1016/j.ins.2016.08.039.
Texto completo da fonteXu, Miao, Yu-Feng Li e Zhi-Hua Zhou. "Multi-Label Learning with PRO Loss". Proceedings of the AAAI Conference on Artificial Intelligence 27, n.º 1 (30 de junho de 2013): 998–1004. http://dx.doi.org/10.1609/aaai.v27i1.8689.
Texto completo da fonteZHANG, Yongwei. "Learning Label Correlations for Multi-Label Online Passive Aggressive Classification Algorithm". Wuhan University Journal of Natural Sciences 29, n.º 1 (fevereiro de 2024): 51–58. http://dx.doi.org/10.1051/wujns/2024291051.
Texto completo da fonteWang, Xiujuan, e Yuchen Zhou. "Multi-Label Feature Selection with Conditional Mutual Information". Computational Intelligence and Neuroscience 2022 (8 de outubro de 2022): 1–13. http://dx.doi.org/10.1155/2022/9243893.
Texto completo da fontePu, Tao, Tianshui Chen, Hefeng Wu e Liang Lin. "Semantic-Aware Representation Blending for Multi-Label Image Recognition with Partial Labels". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 2 (28 de junho de 2022): 2091–98. http://dx.doi.org/10.1609/aaai.v36i2.20105.
Texto completo da fonteKolber, Anna, e Oliver Meixner. "Effects of Multi-Level Eco-Labels on the Product Evaluation of Meat and Meat Alternatives—A Discrete Choice Experiment". Foods 12, n.º 15 (3 de agosto de 2023): 2941. http://dx.doi.org/10.3390/foods12152941.
Texto completo da fonteSong, Hwanjun, Minseok Kim e Jae-Gil Lee. "Toward Robustness in Multi-Label Classification: A Data Augmentation Strategy against Imbalance and Noise". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 19 (24 de março de 2024): 21592–601. http://dx.doi.org/10.1609/aaai.v38i19.30157.
Texto completo da fonteWang, Zhen, Yiqun Duan, Liu Liu e Dacheng Tao. "Multi-label Few-shot Learning with Semantic Inference (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 18 (18 de maio de 2021): 15917–18. http://dx.doi.org/10.1609/aaai.v35i18.17955.
Texto completo da fonteCui, Zijun, Yong Zhang e Qiang Ji. "Label Error Correction and Generation through Label Relationships". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 3693–700. http://dx.doi.org/10.1609/aaai.v34i04.5778.
Texto completo da fonteRottoli, Giovanni Daian, e Carlos Casanova. "Multi-criteria and Multi-expert Requirement Prioritization using Fuzzy Linguistic Labels". ParadigmPlus 3, n.º 1 (8 de fevereiro de 2022): 1–18. http://dx.doi.org/10.55969/paradigmplus.v3n1a1.
Texto completo da fonteSiringoringo, Rimbun, Jamaluddin Jamaluddin e Resianta Perangin-angin. "TEXT MINING DAN KLASIFIKASI MULTI LABEL MENGGUNAKAN XGBOOST". METHOMIKA Jurnal Manajemen Informatika dan Komputerisasi Akuntansi 6, n.º 6 (31 de outubro de 2022): 234–38. http://dx.doi.org/10.46880/jmika.vol6no2.pp234-238.
Texto completo da fonteXiao, Lin, Xiangliang Zhang, Liping Jing, Chi Huang e Mingyang Song. "Does Head Label Help for Long-Tailed Multi-Label Text Classification". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 16 (18 de maio de 2021): 14103–11. http://dx.doi.org/10.1609/aaai.v35i16.17660.
Texto completo da fonteJiang, Ting, Deqing Wang, Leilei Sun, Huayi Yang, Zhengyang Zhao e Fuzhen Zhuang. "LightXML: Transformer with Dynamic Negative Sampling for High-Performance Extreme Multi-label Text Classification". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 9 (18 de maio de 2021): 7987–94. http://dx.doi.org/10.1609/aaai.v35i9.16974.
Texto completo da fonteMu, Dejun, Junhong Duan, Xiaoyu Li, Hang Dai, Xiaoyan Cai e Lantian Guo. "Expede Herculem: Learning Multi Labels From Single Label". IEEE Access 6 (2018): 61410–18. http://dx.doi.org/10.1109/access.2018.2876014.
Texto completo da fonteMa, Jianghong, Zhaoyang Tian, Haijun Zhang e Tommy W. S. Chow. "Multi-Label Low-dimensional Embedding with Missing Labels". Knowledge-Based Systems 137 (dezembro de 2017): 65–82. http://dx.doi.org/10.1016/j.knosys.2017.09.005.
Texto completo da fonteFrasca, Marco, Simone Bassis e Giorgio Valentini. "Learning node labels with multi-category Hopfield networks". Neural Computing and Applications 27, n.º 6 (23 de junho de 2015): 1677–92. http://dx.doi.org/10.1007/s00521-015-1965-1.
Texto completo da fonteYu, Tianyu, Cuiwei Liu, Zhuo Yan e Xiangbin Shi. "A Multi-Task Framework for Action Prediction". Information 11, n.º 3 (16 de março de 2020): 158. http://dx.doi.org/10.3390/info11030158.
Texto completo da fonteXu, Pengyu, Lin Xiao, Bing Liu, Sijin Lu, Liping Jing e Jian Yu. "Label-Specific Feature Augmentation for Long-Tailed Multi-Label Text Classification". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 9 (26 de junho de 2023): 10602–10. http://dx.doi.org/10.1609/aaai.v37i9.26259.
Texto completo da fonteLiu, Tianci, Haoyu Wang, Yaqing Wang, Xiaoqian Wang, Lu Su e Jing Gao. "SimFair: A Unified Framework for Fairness-Aware Multi-Label Classification". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 12 (26 de junho de 2023): 14338–46. http://dx.doi.org/10.1609/aaai.v37i12.26677.
Texto completo da fonteZhang, Yi, Zhecheng Zhang, Mingyuan Chen, Hengyang Lu, Lei Zhang e Chongjun Wang. "LAMB: A novel algorithm of label collaboration based multi-label learning". Intelligent Data Analysis 26, n.º 5 (5 de setembro de 2022): 1229–45. http://dx.doi.org/10.3233/ida-215946.
Texto completo da fonteKhandagale, Sujay, Han Xiao e Rohit Babbar. "Bonsai: diverse and shallow trees for extreme multi-label classification". Machine Learning 109, n.º 11 (23 de agosto de 2020): 2099–119. http://dx.doi.org/10.1007/s10994-020-05888-2.
Texto completo da fonteWang, Yejiang, Yuhai Zhao, Zhengkui Wang, Wen Shan e Xingwei Wang. "Limited-Supervised Multi-Label Learning with Dependency Noise". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 14 (24 de março de 2024): 15662–70. http://dx.doi.org/10.1609/aaai.v38i14.29494.
Texto completo da fontePaul, Dipanjyoti, Rahul Kumar, Sriparna Saha e Jimson Mathew. "Multi-objective Cuckoo Search-based Streaming Feature Selection for Multi-label Dataset". ACM Transactions on Knowledge Discovery from Data 15, n.º 6 (19 de maio de 2021): 1–24. http://dx.doi.org/10.1145/3447586.
Texto completo da fonteXu, Ning, Yun-Peng Liu e Xin Geng. "Partial Multi-Label Learning with Label Distribution". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 6510–17. http://dx.doi.org/10.1609/aaai.v34i04.6124.
Texto completo da fonteLi, Xinran, Wuyin Jin, Xiangyang Xu e Hao Yang. "A Domain-Adversarial Multi-Graph Convolutional Network for Unsupervised Domain Adaptation Rolling Bearing Fault Diagnosis". Symmetry 14, n.º 12 (15 de dezembro de 2022): 2654. http://dx.doi.org/10.3390/sym14122654.
Texto completo da fonteShao, Zhenfeng, Ke Yang e Weixun Zhou. "Performance Evaluation of Single-Label and Multi-Label Remote Sensing Image Retrieval Using a Dense Labeling Dataset". Remote Sensing 10, n.º 6 (16 de junho de 2018): 964. http://dx.doi.org/10.3390/rs10060964.
Texto completo da fonteLi, Yu-Feng, Ju-Hua Hu, Yuang Jiang e Zhi-Hua Zhou. "Towards Discovering What Patterns Trigger What Labels". Proceedings of the AAAI Conference on Artificial Intelligence 26, n.º 1 (20 de setembro de 2021): 1012–18. http://dx.doi.org/10.1609/aaai.v26i1.8285.
Texto completo da fonteAlmi, Stefano, Marco Morandotti e Francesco Solombrino. "A multi-step Lagrangian scheme for spatially inhomogeneous evolutionary games". Journal of Evolution Equations 21, n.º 2 (24 de abril de 2021): 2691–733. http://dx.doi.org/10.1007/s00028-021-00702-5.
Texto completo da fonteGao, Zijun, Jun Wang, Guoxian Yu, Zhongmin Yan, Carlotta Domeniconi e Jinglin Zhang. "Long-Tail Cross Modal Hashing". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 6 (26 de junho de 2023): 7642–50. http://dx.doi.org/10.1609/aaai.v37i6.25927.
Texto completo da fonteFeng, Lei, Bo An e Shuo He. "Collaboration Based Multi-Label Learning". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julho de 2019): 3550–57. http://dx.doi.org/10.1609/aaai.v33i01.33013550.
Texto completo da fonte