Literatura científica selecionada sobre o tema "Mucopolysaccharidosis Gene therapy"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Mucopolysaccharidosis Gene therapy".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Mucopolysaccharidosis Gene therapy"
Ponder, Katherine P., e Mark E. Haskins. "Gene therapy for mucopolysaccharidosis". Expert Opinion on Biological Therapy 7, n.º 9 (29 de agosto de 2007): 1333–45. http://dx.doi.org/10.1517/14712598.7.9.1333.
Texto completo da fonteWood, Heather. "Gene therapy for mucopolysaccharidosis shows promise". Nature Reviews Neurology 13, n.º 9 (28 de julho de 2017): 513. http://dx.doi.org/10.1038/nrneurol.2017.110.
Texto completo da fonteSands, Mark S., John H. Wolfe, Edward H. Birkenmeier, Jane E. Barker, Carole Vogler, William S. Sly, Torayuki Okuyama, Brian Freeman, Andrew Nicholes e Nicholas Muzyczka. "Gene therapy for murine mucopolysaccharidosis type VII". Neuromuscular Disorders 7, n.º 5 (julho de 1997): 352–60. http://dx.doi.org/10.1016/s0960-8966(97)00061-8.
Texto completo da fonteKubaski, Francyne, Fabiano de Oliveira Poswar, Kristiane Michelin-Tirelli, Ursula da Silveira Matte, Dafne D. Horovitz, Anneliese Lopes Barth, Guilherme Baldo, Filippo Vairo e Roberto Giugliani. "Mucopolysaccharidosis Type I". Diagnostics 10, n.º 3 (16 de março de 2020): 161. http://dx.doi.org/10.3390/diagnostics10030161.
Texto completo da fonteLah, Benjamin, Tadej Jalšovec, Ana Drole Torkar, Jana Kodrič, Saba Battelino, Mojca Žerjav Tanšek, Tadej Battelino e Urh Grošelj. "GENE THERAPY IN MUCOPOLYSACCHARIDOSIS TYPE IIIA: CASE REPORTS". Slovenska pediatrija, revija pediatrov Slovenije in specialistov šolske ter visokošolske medicine Slovenije 29, n.º 2 (2022): 66–71. http://dx.doi.org/10.38031/slovpediatr-2022-2-02en.
Texto completo da fonteHemsley, Kim, e Adeline Lau. "Intracerebral gene therapy for mucopolysaccharidosis type IIIB syndrome". Lancet Neurology 16, n.º 9 (setembro de 2017): 681–82. http://dx.doi.org/10.1016/s1474-4422(17)30200-4.
Texto completo da fonteVasilev, Filipp, Aitalina Sukhomyasova e Takanobu Otomo. "Mucopolysaccharidosis-Plus Syndrome". International Journal of Molecular Sciences 21, n.º 2 (9 de janeiro de 2020): 421. http://dx.doi.org/10.3390/ijms21020421.
Texto completo da fonteBosch, Fatima. "Gene therapies: Towards a gene therapy for neurological and somatic mucopolysaccharidosis". New Biotechnology 33 (julho de 2016): S8. http://dx.doi.org/10.1016/j.nbt.2016.06.753.
Texto completo da fontePiechnik, Matthew, Paige C. Amendum, Kazuki Sawamoto, Molly Stapleton, Shaukat Khan, Nidhi Fnu, Victor Álvarez et al. "Sex Difference Leads to Differential Gene Expression Patterns and Therapeutic Efficacy in Mucopolysaccharidosis IVA Murine Model Receiving AAV8 Gene Therapy". International Journal of Molecular Sciences 23, n.º 20 (21 de outubro de 2022): 12693. http://dx.doi.org/10.3390/ijms232012693.
Texto completo da fonteZapolnik, Paweł, e Antoni Pyrkosz. "Nanoemulsions as Gene Delivery in Mucopolysaccharidosis Type I—A Mini-Review". International Journal of Molecular Sciences 23, n.º 9 (26 de abril de 2022): 4785. http://dx.doi.org/10.3390/ijms23094785.
Texto completo da fonteTeses / dissertações sobre o assunto "Mucopolysaccharidosis Gene therapy"
Lutzko, Carolyn Mary. "Gene therapy for canine mucopolysaccharidosis type I". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0006/NQ41221.pdf.
Texto completo da fonteLangford-Smith, Alexander William Walker. "Lentiviral vector mediated haematopoietic stem cell gene therapy for mucopolysaccharidosis type IIIA". Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/lentiviral-vector-mediated-haematopoietic-stem-cell-gene-therapy-for-mucopolysaccharidosis-type-iiia(89f8e108-58f3-42bb-8b80-0e0a1fe45fd7).html.
Texto completo da fonteYogalingam, Gouri. "Molecular characterisation of feline MPS VI and evaluation of gene therapy /". Title page, contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phy54.pdf.
Texto completo da fonteGliddon, Briony Lee. "Enzyme replacement therapy in a murine model of mucopolysaccharidosis type IIIA /". Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phg5595.pdf.
Texto completo da fonteCrawley, Allison Catherine. "Enzyme replacement therapy in a feline model of mucopolysaccharidosis type VI /". Title page, contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phc9107.pdf.
Texto completo da fonteMotas, Mallol Sandra. "Gene therapy for the treatment of neurologic and somatic mucopolysaccharidosis type II (hunter syndrome)". Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/390961.
Texto completo da fonteMucopolysaccharidosis type II (MPSII), or Hunter syndrome, is an X-linked recessive lysosomal storage disease (LSD) caused by the deficiency in Iduronate-2-sulfatase (IDS), an enzyme involved in the stepwise degradation of the glycosaminoglycans (GAGs) heparan sulfate (HS) and dermatan sulfate (DS). The pathological accumulation of undegraded HS and DS in the lysosomes leads to cell dysfunction, causing severe neurologic and somatic disease. The most severe and most prevalent form of Hunter syndrome is characterized by chronic and progressive neurodegeneration of the central nervous system (CNS) and multisystem dysfunction; patients usually die during the second decade of life. To date, weekly intravenous enzyme replacement therapy (ERT) constitutes the only approved therapeutic option for MPSII. However, the inability of recombinant IDS to efficiently cross the blood-brain barrier (BBB) limits the efficacy of ERT in treating neurological symptoms. The therapy has several other drawbacks. Thus, an efficient therapy for the treatment of the neurodegeneration of MPSII disease represents a highly unmet medical need. In vivo gene therapy with adeno-associated vectors offers the possibility of lifelong therapeutic benefit following a single administration. Therefore, the present work was focused on the development of a new gene therapy approach for MPSII based on the delivery of vectors to the cerebrospinal fluid (CSF) and aimed at counteracting simultaneously the neurological and somatic pathology characteristic of the disease. Adeno-associated virus serotype 9 vectors (AAV9) containing the murine Ids gene were administered through a minimal invasive procedure to the CSF of 2-month-old MPSII mice, which already presented established pathology. The efficacy of AAV9-Ids vectors to counteract MPSII pathology after a single intra-CSF injection was evaluated 4 and 8 months after treatment. AAV9-mediated Ids gene transfer led to a significant increase in IDS activity throughout the encephalon, which resulted in full reversion of lysosomal storage lesions. In addition, correction of lysosomal dysfunction in the CNS, normalization of brain transcriptomic signature and disappearance of neuroinflammation were achieved after gene transfer. Moreover, after AAV9-Ids delivery to the CSF, vectors also transduced the liver, providing a peripheral source of the therapeutic protein that corrected storage pathology in visceral organs of treated MPSII mice. The reversion of the pathology in non-transduced somatic organs provided evidence of cross-correction by circulating enzyme. Importantly, AAV9-Ids treatment also resulted in normalization of behavioural deficits and considerably prolonged the survival of treated MPSII mice. The efficacy of the intra-CSF administration of AAV9 vectors containing the human IDS coding sequence was also evaluated in MPSII mice. One and a half months after gene transfer, a significant increase in IDS activity was documented throughout the encephalon, an in the liver and serum of treated MPSII mice. Consequently, pathological GAG content was reduced, or even normalized, in the CNS and in most somatic tissues of MPSII mice that received the vectors. Altogether, the results obtained in the present work provide a strong proof of concept that supports the clinical translation of the intra-CSF AAV9-IDS gene therapy for the treatment of Hunter patients with cognitive impairment.
Sorrentino, Nicolina Cristina. "Systemic AAV-mediated gene therapy approach to treat CNS pathology in Mucopolysaccharidosis type IIIA". Thesis, Open University, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.594745.
Texto completo da fonteSergijenko, Ana. "Improved lentiviral vectors for haematopoietic stem cell gene therapy of Mucopolysaccaridosis type IIIA". Thesis, University of Manchester, 2012. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:176449.
Texto completo da fonteSchuh, Roselena Silvestri. "Desenvolvimento de vetores nanotecnológicos lipídicos do sistema CRISPR/Cas9 visando à terapia gênica para Mucopolissacaridose tipo I". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/175139.
Texto completo da fonteMucopolysaccharidosis type I (MPS I) is caused by the deficiency of alpha-L-iduronidase (IDUA), responsible for the catabolism of glycosaminoglycans (GAGs), leading to multisystemic accumulation of heparan and dermatan sulfate. This study aims to evaluate the potential of lipid-based nanostructures as carriers of the CRISPR/Cas9 plasmid and a vector donor of the IDUA/Idua sequence for gene editing in patients’ fibroblasts and in a murine model of MPS I. Liposomes (DOTAP, DOPE, and DSPE-PEG) and nanoemulsions (also MCT) were produced through high-pressure homogenization or microfluidization. DNA was associated with liposomes and nanoemulsions by adsorption or by encapsulation of DNA/DOTAP preformed complexes in the oil core of nanoemulsions. The transfection efficiency of complexes was evaluated in fibroblasts from MPS I patients and a significant increase in IDUA activity was demonstrated at 2, 15, and 30 days after treatments. It was also possible to observe a significant reduction in lysosomal amount in treated fibroblasts. The physicochemical characterization of liposomes and nanoemulsions produced through microfluidization complexed with a single plasmid or along with an oligonucleotide has been verified and it can be stated that the complexing and transfection capacity of the complexes depends directly on the cell type and the charge ratio, and there are no implications of the size of the nucleic acid sequences. MPS I mice received the liposomal complexes by hydrodynamic injection and their immediate biodistribution was detected mainly in the lung, heart, and liver. An increase of about 6% in normal serum IDUA activity was maintained for six months, in addition to increased lung, heart, liver, and kidney activity after euthanasia. The enhanced enzymatic activity promoted a significant GAGs reduction in urine and in the same tissues, corroborating with histological analysis. In an ongoing study, a deeper investigation was carried out on the effect of liposomal treatment on bone morphology, cardiovascular and respiratory systems, and brain function. The echocardiographic analysis showed an improvement in the parameters of hypertrophy and contractility of the heart, but there was no improvement in heart valves. Aorta diameter was similar to that of normal animals, but elastin breaks were between the normal and untreated groups. Facial morphology of treated animals was intermediate, as well as the analysis of zygomatic bone thickness. However, femoral bone showed thickness comparable to normal animals. Lung resistance, on the other hand, showed a tendency to reduction in treated animals when compared to MPS I. The set of results demonstrates the potential of the co-complexed lipid nanostructures with the CRISPR/Cas9 plasmid and a donor vector of the IDUA/Idua sequence for MPS I gene therapy.
Pérez, Castro Jennifer Ana. "Estrategia de terapia génica para el tratamiento de las alteraciones auditivas y visuales de la mucopolisacaridosis tipo IIIB". Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671992.
Texto completo da fonteLa Mucopolisacaridosis tipo IIIB (MPSIIIB) es una enfermedad rara de acúmulo lisosomal autosómica recesiva causada por la deficiencia en la enzima lisosomal α-N-acetilglucosaminidasa (NAGLU). La deficiencia de esta enzima provoca la acumulación de formas parcialmente degradadas del glucosaminoglicano (GAG) heparán sulfato (HS) en el interior de los lisosomas. Esta acumulación anómala sostenida en el tiempo genera la disfuncionalidad celular y la posterior muerte de las células. La MPSIIIB presenta una profunda afectación del Sistema Nervioso Central (SNC) caracterizada por la neurodegenración y la neuroinflamación. Alteraciones periféricas moderadas también están presentes en esta enfermedad. Además, con la edad, los pacientes presentan afectaciones altamente invalidantes de las funciones auditiva y visual, que provocan una severa hipoacusia y una progresiva pérdida de la visión. Actualmente, no existe ninguna terapia efectiva aprobada para tratar la MPSIIIB. Los tratamientos disponibles se centran en paliar la sintomatología y mejorar la calidad de vida de los pacientes y sus familias. Por tanto, es necesaria la búsqueda de una terapia eficaz que permita revertir las alteraciones derivadas de la MPSIIIB. La terapia génica in vivo basada en la administración de vectores virales adenoasociados (AAV: Adeno-Associated Virus) representa una alternativa prometedora, ya que una única administración del tratamiento permitiría una eficacia terapéutica a largo plazo. Previamente, en nuestro laboratorio, se desarrolló una aproximación de terapia génica basada en una única administración al Líquido Cefalorraquídeo (LCR) de ratones modelo de la enfermedad de vectores AAV9 codificantes para la NAGLU murina (AAV9-Naglu) a la dosis de 3.0x1010 genomas virales (vg)/ratón. Este estudió demostró la eficacia del tratamiento en la corrección de las alteraciones periféricas y del SNC de la enfermedad, así como una reversión de las alteraciones conductuales y un aumento en la esperanza de vida del modelo murino de la MPSIIIB. Para la traslacionalidad clínica de la cualquier aproximación de terapia génica con vectores AAV es crucial minimizar la dosis de vector administrada preservando la máxima eficacia terapéutica. Por ello, se realizó un estudio con el objetivo de establecer una dosis del vector AAV9-Nalgu más baja que se pudiera designar como la "mínima terapéutica". En este trabajo se observó que, tras la evaluación de 4 dosis diferentes equidistantes entre sí, se pudo designar la de 9.3x109 vg/ratón como la mínima terapéutica, pues era 3 veces menor q la empleada en el estudio anterior y además corregía tanto las alteraciones del SNC y periféricas, como las alteraciones del comportamiento. Además, se evaluó la eficacia del tratamiento a esta dosis sobre las alteraciones auditivas del ratón modelo de la MPSIIIB y se demostró su capacidad de recuperar los niveles de actividad NAGLU en la cóclea y de normalizar el contenido de GAGs en este tejido, preservando la citoarquitectura coclear y de la audición tras 4 meses de tratamiento. Además, también se observó que este tratamiento repercutía en la normalización de la actividad NAGLU en el ojo y la corrección de la distensión lisosomal en la retina. Ello contribuyó a la prevención de la degeneración retiniana, conllevando a la conservación de la agudeza visual a largo plazo. En conjunto, estos resultados demuestran la eficacia terapéutica de una única administración al LCR del vector AAV9-Naglu en ratones MPSIIIB jóvenes sobre la preservación de las afectaciones auditivas y visuales.
Mucopolysaccharidosis type IIIB (MPSIIIB) is a rare autosomal recessive lysosomal storage disease caused by the deficiency of a lysosomal enzyme called α-N-acetylglucosaminidase (NAGLU). This deficiency causes the accumulation of partially degraded forms of the glycosaminoglycan (GAG) heparan sulfate (HS) within the lysosomes. This abnormal accumulation sustained over time generates cellular dysfunction and subsequent cell death. MPSIIIB presents a profound involvement of the central nervous system (CNS) characterized by neurodegeneration and neuroinflammation. Moderate peripheral alterations are also present in this disease. In addition, with age, patients present highly disabling impairments of the auditory and visual functions, which cause severe hearing loss and progressive loss of vision. Currently, there is no effective treatment approved for MPSIIIB. The available treatments are focused on alleviating the symptoms and improving the quality of life of patients and their families. Therefore, it is necessary to develop an effective therapy that allows the correction of the alterations derived from MPSIIIB. In vivo gene therapy based on the administration of adeno-associated viral vectors (AAV) represents a promising alternative, since a single administration of the treatment would allow long-term therapeutic efficacy. Previously, in our laboratory, a gene therapy approach was developed based on a single administration to the cerebrospinal fluid (CSF) of AAV9 vectors encoding murine NAGLU (AAV9-Naglu) at the dose of 3 x 1010 viral genomes (vg)/mouse on the MPSIIIB mouse model. This study demonstrated the efficacy of the treatment in correcting the peripheral and CNS pathology, as well as a reversing the behavioural alterations and increasing the life expectancy of the MPSIIIB mouse model. For the clinical translation of any AAV-mediated gene therapy approach, it is crucial to minimize the vector dose administered while preserving maximum therapeutic efficacy. Therefore, a study was conducted with the aim of establishing a lower dose of the AAV9-Naglu vector that could be designated as the “minimum therapeutic dose”. Among 4 different equidistant doses, it was possible to designate 9.3 x 109 vg/mouse as the minimum therapeutical dose. Even though it was 3 times lower than the one used in the previous study, it was able to correct the behaviour and the CNS and peripheral alterations. In addition, the therapeutic efficacy of this dose in the hearing alterations of the MPSIIIB mice model was evaluated, resulting in the recovery of NAGLU activity and normalization of GAG accumulation in the cochlea. Cochlear cytoarchitecture and hearing function were preserved in MPSIIIB mice 4 months after treatment. Furthermore, we also observed that this treatment was able to normalize the NAGLU activity in the eye, thus correcting the lysosomal pathology in the retina. This contributed to the prevention of retinal degeneration, leading to long-term preservation of visual acuity. Overall, these results demonstrate the therapeutic efficacy of a single CSF administration of the AAV9-Naglu vector in young MPSIIIB mice on the preservation of auditory and visual impairments.
Universitat Autònoma de Barcelona. Programa de Doctorat en Bioquímica, Biologia Molecular i Biomedicina
Livros sobre o assunto "Mucopolysaccharidosis Gene therapy"
Lutzko, Carolyn Mary. Gene therapy for canine mucopolysaccharidosis type I. 1999.
Encontre o texto completo da fonte