Artigos de revistas sobre o tema "MRI probe"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "MRI probe".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Periyathambi, Prabu, Alien Balian, Zhangjun Hu, Daniel Padro, Luiza I. Hernandez, Kajsa Uvdal, Joao Duarte e Frank J. Hernandez. "Activatable MRI probes for the specific detection of bacteria". Analytical and Bioanalytical Chemistry 413, n.º 30 (27 de outubro de 2021): 7353–62. http://dx.doi.org/10.1007/s00216-021-03710-z.
Texto completo da fonteFaas, Henryk M., James L. Krupa, Alexander J. Taylor, Francesco Zamberlan, Christopher J. Philp, Huw E. L. Williams, Simon R. Johnson, Galina E. Pavlovskaya, Neil R. Thomas e Thomas Meersmann. "Accelerated 19F·MRI Detection of Matrix Metalloproteinase-2/-9 through Responsive Deactivation of Paramagnetic Relaxation Enhancement". Contrast Media & Molecular Imaging 2019 (28 de fevereiro de 2019): 1–13. http://dx.doi.org/10.1155/2019/4826520.
Texto completo da fonteAntonios, Joseph P., Horacio Soto, Richard G. Everson, Diana L. Moughon, Anthony C. Wang, Joey Orpilla, Caius Radu et al. "Detection of immune responses after immunotherapy in glioblastoma using PET and MRI". Proceedings of the National Academy of Sciences 114, n.º 38 (5 de setembro de 2017): 10220–25. http://dx.doi.org/10.1073/pnas.1706689114.
Texto completo da fontePulyer Yuly, M., e Samuel Patz. "5572132 MRI probe for external imaging". Magnetic Resonance Imaging 15, n.º 4 (janeiro de 1997): XVII. http://dx.doi.org/10.1016/s0730-725x(97)89062-5.
Texto completo da fonteKotera, Naoko, Nawal Tassali, Estelle Léonce, Céline Boutin, Patrick Berthault, Thierry Brotin, Jean-Pierre Dutasta et al. "A Sensitive Zinc-Activated129Xe MRI Probe". Angewandte Chemie International Edition 51, n.º 17 (12 de março de 2012): 4100–4103. http://dx.doi.org/10.1002/anie.201109194.
Texto completo da fonteKotera, Naoko, Nawal Tassali, Estelle Léonce, Céline Boutin, Patrick Berthault, Thierry Brotin, Jean-Pierre Dutasta et al. "A Sensitive Zinc-Activated129Xe MRI Probe". Angewandte Chemie 124, n.º 17 (12 de março de 2012): 4176–79. http://dx.doi.org/10.1002/ange.201109194.
Texto completo da fonteHillery, Terence. "Genicular Nerve Radiofrequency Ablation Before and After Magnetic Resonance Imaging Anatomical Mapping: Case Study". Pain Medicine Case Reports 7, n.º 4 (31 de julho de 2023): 183–86. http://dx.doi.org/10.36076/pmcr.2023.7.183.
Texto completo da fontePinggera, Daniel, Paul Rhomberg, Ronny Beer, Claudius Thomé e Ondra Petr. "Brain Tissue Damage Induced by Multimodal Neuromonitoring In Situ during MRI after Severe Traumatic Brain Injury: Incidence and Clinical Relevance". Journal of Clinical Medicine 11, n.º 11 (2 de junho de 2022): 3169. http://dx.doi.org/10.3390/jcm11113169.
Texto completo da fonteKim, Ji Min, Ah Yung Han, Ha Young Lee, So Ra Lee e Dae Cheol Kweon. "Measurement of MRI Monitor Luminance and MRI Room Illuminance with a Light Probe". Journal of the Korean Magnetics Society 26, n.º 5 (31 de outubro de 2016): 168–72. http://dx.doi.org/10.4283/jkms.2016.26.5.168.
Texto completo da fonteJain, Amit L., Abhinav Sidana, Zachary Stanik, Mahir Maruf, Brian P. Calio, Dordaneh Sugano, Kai Hans Hammerich et al. "Training and skills assessment for MRI/TRUS fusion-guided prostate biopsy: End-fire vs. side-fire ultrasound probes." Journal of Clinical Oncology 35, n.º 6_suppl (20 de fevereiro de 2017): e540-e540. http://dx.doi.org/10.1200/jco.2017.35.6_suppl.e540.
Texto completo da fonteRubinson, Kenneth A., e Michael Boska. "A novel topical probe for MRI: The flat, truncated line probe". Magnetic Resonance Imaging 13, n.º 2 (janeiro de 1995): 301–8. http://dx.doi.org/10.1016/0730-725x(94)00112-g.
Texto completo da fonteYang, Lei, Mohammad Javad Afshari, Jianxian Ge, Dandan Kou, Lei Chen, Dandan Zhou, Cang Li et al. "Functionalized Ultrasmall Iron Oxide Nanoparticles for T1-Weighted Magnetic Resonance Imaging of Tumor Hypoxia". Molecules 27, n.º 20 (15 de outubro de 2022): 6929. http://dx.doi.org/10.3390/molecules27206929.
Texto completo da fonteZradziński, Patryk, Jolanta Karpowicz, Thomas Quirin, Dominic Jeker, Joris Pascal, Andrzej Stępniewski e Krzysztof Gryz. "Evaluation of the head exposure to a static magnetic field while walking around 1.5T and 7T MRI magnets using single and spatially distributed Hall probes". IOP Conference Series: Materials Science and Engineering 1320, n.º 1 (1 de novembro de 2024): 012007. http://dx.doi.org/10.1088/1757-899x/1320/1/012007.
Texto completo da fonteParrott, Daniel, W. Shirangi Fernando e Andre F. Martins. "Smart MRI Agents for Detecting Extracellular Events In Vivo: Progress and Challenges". Inorganics 7, n.º 2 (9 de fevereiro de 2019): 18. http://dx.doi.org/10.3390/inorganics7020018.
Texto completo da fonteTam, Jenny, Alexander Pilozzi, Umar Mahmood e Xudong Huang. "Simultaneous Monitoring of Multi-Enzyme Activity and Concentration in Tumor Using a Triply Labeled Fluorescent In Vivo Imaging Probe". International Journal of Molecular Sciences 21, n.º 9 (27 de abril de 2020): 3068. http://dx.doi.org/10.3390/ijms21093068.
Texto completo da fonteMatsunaga, Tadao, Yuichiro Matsuoka, Masayoshi Nakazono, Kagayaki Kuroda, Masayoshi Esashi e Yoichi Haga. "Intraluminal MRI Probe Using Small Size Variable Capacitor". IEEJ Transactions on Sensors and Micromachines 136, n.º 5 (2016): 153–59. http://dx.doi.org/10.1541/ieejsmas.136.153.
Texto completo da fonteDelli Castelli, Daniela, Lorenzo Tei, Fabio Carniato, Silvio Aime e Mauro Botta. "[Yb(AAZTA)(H2O)]−: an unconventional ParaCEST MRI probe". Chemical Communications 54, n.º 16 (2018): 2004–7. http://dx.doi.org/10.1039/c8cc00193f.
Texto completo da fonteRhinehart Edward, J., e A. Spohn Michael. "5365928 Endorectal probe with planar moveable MRI coil". Magnetic Resonance Imaging 13, n.º 5 (janeiro de 1995): XXXI. http://dx.doi.org/10.1016/0730-725x(95)98096-9.
Texto completo da fonteSenanayake, P. Kanthi, Nicola J. Rogers, Katie-Louise N. A. Finney, Peter Harvey, Alexander M. Funk, J. Ian Wilson, Dara O'Hogain, Ross Maxwell, David Parker e Andrew M. Blamire. "A new paramagnetically shifted imaging probe for MRI". Magnetic Resonance in Medicine 77, n.º 3 (28 de fevereiro de 2016): 1307–17. http://dx.doi.org/10.1002/mrm.26185.
Texto completo da fonteTomanek, Boguslaw, David I. Hoult, Xiaoman Chen e Richard Gordon. "Probe with chest shielding for improved breast MRI". Magnetic Resonance in Medicine 43, n.º 6 (2000): 917–20. http://dx.doi.org/10.1002/1522-2594(200006)43:6<917::aid-mrm22>3.0.co;2-i.
Texto completo da fonteShankaranarayanan, Ajit, Jeffrey L. Duerk e Jonathan S. Lewin. "Developing a multichannel temperature probe for interventional MRI". Journal of Magnetic Resonance Imaging 8, n.º 1 (janeiro de 1998): 197–202. http://dx.doi.org/10.1002/jmri.1880080133.
Texto completo da fonteBlank, Aharon, Shlomo Ish-Shalom, Lazar Shtirberg e Yuval Zur. "Ex situ endorectal MRI probe for prostate imaging". Magnetic Resonance in Medicine 62, n.º 6 (25 de setembro de 2009): 1585–96. http://dx.doi.org/10.1002/mrm.22151.
Texto completo da fonteMATSUNAGA, TADAO, YUICHIRO MATSUOKA, MASAYOSHI NAKAZONO, KAGAYAKI KURODA, MASAYOSHI ESASHI e YOICHI HAGA. "Intraluminal MRI Probe Using Small Size Variable Capacitor". Electronics and Communications in Japan 100, n.º 3 (16 de fevereiro de 2017): 29–38. http://dx.doi.org/10.1002/ecj.11932.
Texto completo da fonteDoan, Thi Kim Dung, Masakazu Umezawa, Kazunobu Ohnuki, Karina Nigoghossian, Kyohei Okubo, Masao Kamimura, Masayuki Yamaguchi, Hirofumi Fujii e Kohei Soga. "The influence of Gd-DOTA conjugating ratios to PLGA-PEG micelles encapsulated IR-1061 on bimodal over-1000 nm near-infrared fluorescence and magnetic resonance imaging". Biomaterials Science 10, n.º 5 (2022): 1217–30. http://dx.doi.org/10.1039/d1bm01574e.
Texto completo da fonteHu, Yuxuan, Yuqi Wang, Xidan Wen, Yifan Pan, Xiaoyang Cheng, Ruibing An, Guandao Gao, Hong-Yuan Chen e Deju Ye. "Responsive Trimodal Probes for In Vivo Imaging of Liver Inflammation by Coassembly and GSH-Driven Disassembly". Research 2020 (28 de agosto de 2020): 1–13. http://dx.doi.org/10.34133/2020/4087069.
Texto completo da fonteNikiforova, Alena, e Igor Sedov. "Molecular Design of Magnetic Resonance Imaging Agents Binding to Amyloid Deposits". International Journal of Molecular Sciences 24, n.º 13 (6 de julho de 2023): 11152. http://dx.doi.org/10.3390/ijms241311152.
Texto completo da fonteZhang, Songbai, Vega Lloveras, Yufei Wu, Juan Tolosa, Joaquín C. García-Martínez e José Vidal-Gancedo. "Fluorescent and Magnetic Radical Dendrimers as Potential Bimodal Imaging Probes". Pharmaceutics 15, n.º 6 (20 de junho de 2023): 1776. http://dx.doi.org/10.3390/pharmaceutics15061776.
Texto completo da fonteTanifum, Eric A., Laxman Devkota, Conelius Ngwa, Andrew A. Badachhape, Ketan B. Ghaghada, Jonathan Romero, Robia G. Pautler e Ananth V. Annapragada. "A Hyperfluorinated Hydrophilic Molecule for Aqueous 19F MRI Contrast Media". Contrast Media & Molecular Imaging 2018 (12 de novembro de 2018): 1–8. http://dx.doi.org/10.1155/2018/1693513.
Texto completo da fonteGambino, Giuseppe, Tanja Gambino e Goran Angelovski. "Combination of bioresponsive chelates and perfluorinated lipid nanoparticles enables in vivo MRI probe quantification". Chemical Communications 56, n.º 66 (2020): 9433–36. http://dx.doi.org/10.1039/d0cc04416d.
Texto completo da fonteTian, Hongda, Jinren Liu, Zhengrong Xie, Zhongyuan Li e Chunxiang Li. "Preparation and MRI Study of HER2-Targeted Bimodal Molecular Probe Gd-Cy5.5-Pertuzumab for Thyroid Cancer". Contrast Media & Molecular Imaging 2022 (30 de dezembro de 2022): 1–8. http://dx.doi.org/10.1155/2022/3921362.
Texto completo da fonteWang, Cuihua, David Cheng, Negin Jalali Motlagh, Enrico G. Kuellenberg, Gregory R. Wojtkiewicz, Stephen P. Schmidt, Roland Stocker e John W. Chen. "Highly Efficient Activatable MRI Probe to Sense Myeloperoxidase Activity". Journal of Medicinal Chemistry 64, n.º 9 (4 de maio de 2021): 5874–85. http://dx.doi.org/10.1021/acs.jmedchem.1c00038.
Texto completo da fonteYabbarov, Nikita, Elena Nikolskaya, Maria Sokol, Mariia Mollaeva, Margarita Chirkina, Irina Seregina, Mikhail Gulyaev, Yury Pirogov e Rem Petrov. "Synergetic Enhancement of Tumor Double-Targeted MRI Nano-Probe". International Journal of Molecular Sciences 23, n.º 6 (14 de março de 2022): 3119. http://dx.doi.org/10.3390/ijms23063119.
Texto completo da fonteMizukami, Shin, Rika Takikawa, Fuminori Sugihara, Yuichiro Hori, Hidehito Tochio, Markus Wälchli, Masahiro Shirakawa e Kazuya Kikuchi. "Paramagnetic Relaxation-Based19F MRI Probe To Detect Protease Activity". Journal of the American Chemical Society 130, n.º 3 (janeiro de 2008): 794–95. http://dx.doi.org/10.1021/ja077058z.
Texto completo da fonteGoto, Shoji, Tadao Matsunaga, Yuichiro Matsuoka, Kagayaki Kuroda, Masayoshi Esashi e Yoichi Haga. "Development of Intravascular MRI Probe Applicable to Catheter Mounting". IEEJ Transactions on Sensors and Micromachines 128, n.º 10 (2008): 389–95. http://dx.doi.org/10.1541/ieejsmas.128.389.
Texto completo da fonteBluemke, David A., e João A. C. Lima. "Using MRI to Probe the Heart in Hypertrophic Cardiomyopathy". Radiology 294, n.º 2 (fevereiro de 2020): 287–88. http://dx.doi.org/10.1148/radiol.2019192370.
Texto completo da fonteRojas-Quijano, Federico A., Gyula Tircsó, Enikő Tircsóné Benyó, Zsolt Baranyai, Huan Tran Hoang, Ferenc K. Kálmán, Praveen K. Gulaka et al. "Synthesis and Characterization of a Hypoxia-Sensitive MRI Probe". Chemistry - A European Journal 18, n.º 31 (27 de junho de 2012): 9669–76. http://dx.doi.org/10.1002/chem.201200266.
Texto completo da fonteMöckel, Jana, Julia Brangsch, Carolin Reimann, Jan O. Kaufmann, Ingolf Sack, Dilyana B. Mangarova, Avan Kader et al. "Assessment of Albumin ECM Accumulation and Inflammation as Novel In Vivo Diagnostic Targets for Multi-Target MR Imaging". Biology 10, n.º 10 (27 de setembro de 2021): 964. http://dx.doi.org/10.3390/biology10100964.
Texto completo da fonteDong, Xiawei, Jing Ye, Yihan Wang, Hongjie Xiong, Hui Jiang, Hongbing Lu, Xiaohui Liu e Xuemei Wang. "Ultra-Small and Metabolizable Near-Infrared Au/Gd Nanoclusters for Targeted FL/MRI Imaging and Cancer Theranostics". Biosensors 12, n.º 8 (24 de julho de 2022): 558. http://dx.doi.org/10.3390/bios12080558.
Texto completo da fonteHa, Phuong Thu, Thi Thu Huong Le, Thi Dieu Thuy Ung, Hai Doan Do, Bich Thuy Doan, Thi Thu Trang Mai, Hong Nam Pham, Thi My Nhung Hoang, Ke Son Phan e Thuc Quang Bui. "Properties and bioeffects of magneto–near infrared nanoparticles on cancer diagnosis and treatment". New Journal of Chemistry 44, n.º 40 (2020): 17277–88. http://dx.doi.org/10.1039/d0nj02848g.
Texto completo da fonteLarson, Blake T., Arthur G. Erdman, Nikolaos V. Tsekos, Essa Yacoub, Panagiotis V. Tsekos e Ioannis G. Koutlas. "Design of an MRI-Compatible Robotic Stereotactic Device for Minimally Invasive Interventions in the Breast†". Journal of Biomechanical Engineering 126, n.º 4 (1 de agosto de 2004): 458–65. http://dx.doi.org/10.1115/1.1785803.
Texto completo da fonteHarris, Michael, Jacek L. Kolanowski, Edward S. O’Neill, Céline Henoumont, Sophie Laurent, Tatjana N. Parac-Vogt e Elizabeth J. New. "Drawing on biology to inspire molecular design: a redox-responsive MRI probe based on Gd(iii)-nicotinamide". Chemical Communications 54, n.º 92 (2018): 12986–89. http://dx.doi.org/10.1039/c8cc07092j.
Texto completo da fonteSeo, Hyunkwan, Sung Kwan Hwang, Hee-Won Kim e Kyu Chan Lee. "Motion Accuracy of Pneumatic Stepper Motor-Driven Robotic System Developed for MRI-Guided High-Intensity Focused Ultrasound Treatment of Prostate Disease". Applied Bionics and Biomechanics 2024 (10 de maio de 2024): 1–13. http://dx.doi.org/10.1155/2024/5556537.
Texto completo da fonteYousefvand, Milad, Zahra Mohammadi, Farzaneh Ghorbani, Rasoul Irajirad, Hormoz Abedi, Somayyeh Seyedi, Arash Papi e Alireza Montazerabadi. "Investigation of Specific Targeting of Triptorelin-Conjugated Dextran-Coated Magnetite Nanoparticles as a Targeted Probe in GnRH+ Cancer Cells in MRI". Contrast Media & Molecular Imaging 2021 (17 de maio de 2021): 1–10. http://dx.doi.org/10.1155/2021/5534848.
Texto completo da fonteDadey, David Y. A., Ashwin A. Kamath, Matthew D. Smyth, Michael R. Chicoine, Eric C. Leuthardt e Albert H. Kim. "Utilizing personalized stereotactic frames for laser interstitial thermal ablation of posterior fossa and mesiotemporal brain lesions: a single-institution series". Neurosurgical Focus 41, n.º 4 (outubro de 2016): E4. http://dx.doi.org/10.3171/2016.7.focus16207.
Texto completo da fonteReeßing, F., M. C. A. Stuart, D. F. Samplonius, R. A. J. O. Dierckx, B. L. Feringa, W. Helfrich e W. Szymanski. "A light-responsive liposomal agent for MRI contrast enhancement and monitoring of cargo delivery". Chemical Communications 55, n.º 72 (2019): 10784–87. http://dx.doi.org/10.1039/c9cc05516a.
Texto completo da fonteKakiuchi, Ryo, Tasuku Hirayama, Daijiro Yanagisawa, Ikuo Tooyama e Hideko Nagasawa. "A 19F-MRI probe for the detection of Fe(ii) ions in an aqueous system". Organic & Biomolecular Chemistry 18, n.º 30 (2020): 5843–49. http://dx.doi.org/10.1039/d0ob00903b.
Texto completo da fontePinto, Sara M. A., Mário J. F. Calvete, Mariana E. Ghica, Sérgio Soler, Iluminada Gallardo, Agnès Pallier, Mariana B. Laranjo et al. "A biocompatible redox MRI probe based on a Mn(ii)/Mn(iii) porphyrin". Dalton Transactions 48, n.º 10 (2019): 3249–62. http://dx.doi.org/10.1039/c8dt04775h.
Texto completo da fonteZhou, Wei, Jiandong Huang, Qingwei Xiao, Shunmin Hu, Shijia Li, Jie Zheng, Zhiyun Du, Jiangling Peng e Huixiong Chen. "Glu-Urea-Lys Scaffold Functionalized Superparamagnetic Iron Oxide Nanoparticles Targeting PSMA for In Vivo Molecular MRI of Prostate Cancer". Pharmaceutics 14, n.º 10 (26 de setembro de 2022): 2051. http://dx.doi.org/10.3390/pharmaceutics14102051.
Texto completo da fontePeng, Qiaoli, Yaping Yuan, Huaibin Zhang, Shaowei Bo, Yu Li, Shizhen Chen, Zhigang Yang, Xin Zhou e Zhong-Xing Jiang. "19F CEST imaging probes for metal ion detection". Organic & Biomolecular Chemistry 15, n.º 30 (2017): 6441–46. http://dx.doi.org/10.1039/c7ob01068k.
Texto completo da fontePerera, Vindya S., Guojun Chen, Qing Cai e Songping D. Huang. "Nanoparticles of gadolinium-incorporated Prussian blue with PEG coating as an effective oral MRI contrast agent for gastrointestinal tract imaging". Analyst 141, n.º 6 (2016): 2016–22. http://dx.doi.org/10.1039/c5an01873k.
Texto completo da fonte