Literatura científica selecionada sobre o tema "MR Fingerprinting"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "MR Fingerprinting".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "MR Fingerprinting"
Flassbeck, Sebastian, Simon Schmidt, Peter Bachert, Mark E. Ladd e Sebastian Schmitter. "Flow MR fingerprinting". Magnetic Resonance in Medicine 81, n.º 4 (2 de dezembro de 2018): 2536–50. http://dx.doi.org/10.1002/mrm.27588.
Texto completo da fontePierre, Eric Y., Dan Ma, Yong Chen, Chaitra Badve e Mark A. Griswold. "Multiscale reconstruction for MR fingerprinting". Magnetic Resonance in Medicine 75, n.º 6 (30 de junho de 2015): 2481–92. http://dx.doi.org/10.1002/mrm.25776.
Texto completo da fonteZhang, Xiaodi, Zechen Zhou, Shiyang Chen, Shuo Chen, Rui Li e Xiaoping Hu. "MR fingerprinting reconstruction with Kalman filter". Magnetic Resonance Imaging 41 (setembro de 2017): 53–62. http://dx.doi.org/10.1016/j.mri.2017.04.004.
Texto completo da fonteBuonincontri, Guido, e Stephen J. Sawiak. "MR fingerprinting with simultaneous B1 estimation". Magnetic Resonance in Medicine 76, n.º 4 (28 de outubro de 2015): 1127–35. http://dx.doi.org/10.1002/mrm.26009.
Texto completo da fonteCohen, Ouri, Bo Zhu e Matthew S. Rosen. "MR fingerprinting Deep RecOnstruction NEtwork (DRONE)". Magnetic Resonance in Medicine 80, n.º 3 (6 de abril de 2018): 885–94. http://dx.doi.org/10.1002/mrm.27198.
Texto completo da fonteBenjamin, Arnold Julian Vinoj, Pedro A. Gómez, Mohammad Golbabaee, Zaid Bin Mahbub, Tim Sprenger, Marion I. Menzel, Michael Davies e Ian Marshall. "Multi-shot Echo Planar Imaging for accelerated Cartesian MR Fingerprinting: An alternative to conventional spiral MR Fingerprinting". Magnetic Resonance Imaging 61 (setembro de 2019): 20–32. http://dx.doi.org/10.1016/j.mri.2019.04.014.
Texto completo da fonteChen, Yong, Yun Jiang, Shivani Pahwa, Dan Ma, Lan Lu, Michael D. Twieg, Katherine L. Wright, Nicole Seiberlich, Mark A. Griswold e Vikas Gulani. "MR Fingerprinting for Rapid Quantitative Abdominal Imaging". Radiology 279, n.º 1 (abril de 2016): 278–86. http://dx.doi.org/10.1148/radiol.2016152037.
Texto completo da fonteCauley, Stephen F., Kawin Setsompop, Dan Ma, Yun Jiang, Huihui Ye, Elfar Adalsteinsson, Mark A. Griswold e Lawrence L. Wald. "Fast group matching for MR fingerprinting reconstruction". Magnetic Resonance in Medicine 74, n.º 2 (28 de agosto de 2014): 523–28. http://dx.doi.org/10.1002/mrm.25439.
Texto completo da fonteAnderson, Christian E., Charlie Y. Wang, Yuning Gu, Rebecca Darrah, Mark A. Griswold, Xin Yu e Chris A. Flask. "Regularly incremented phase encoding – MR fingerprinting (RIPE‐MRF) for enhanced motion artifact suppression in preclinical cartesian MR fingerprinting". Magnetic Resonance in Medicine 79, n.º 4 (10 de agosto de 2017): 2176–82. http://dx.doi.org/10.1002/mrm.26865.
Texto completo da fonteZou, Lixian, Dong Liang, Huihui Ye, Shi Su, Yanjie Zhu, Xin Liu, Hairong Zheng e Haifeng Wang. "Quantitative MR relaxation using MR fingerprinting with fractional-order signal evolution". Journal of Magnetic Resonance 330 (setembro de 2021): 107042. http://dx.doi.org/10.1016/j.jmr.2021.107042.
Texto completo da fonteTeses / dissertações sobre o assunto "MR Fingerprinting"
Slioussarenko, Constantin. "Whole-body quantitative imaging of the skeletal muscle by Magnetic Resonance Fingerprinting". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST188.
Texto completo da fonteNeuromuscular disorders involve systemic and heterogeneous alteration of skeletal muscles, which can eventually lead to death due to respiratory or cardiac failure. This makes monitoring the progression of the disease crucial, but particularly challenging. Quantitative multiparametric MRI allows for precise evaluation of the structure and composition of muscle tissues, but is complex to include in a clinical pipeline due to long acquisition and reconstruction times, as well as physiological movement, especially for respiratory muscles. In this thesis, we developed a whole-body clinical MRI protocol to monitor the systemic progression of muscle tissues, by simultaneously measuring fat fraction, a marker of disease progression, and water T1, a marker of disease activity. The acquisition was optimized using a 3D "MR Fingerprinting" sequence, a recent paradigm for rapid quantitative MRI. An MR Fingerprinting sequence optimization framework trained on a database of realistic digital phantoms was developed to reduce acquisition time. Reconstruction was accelerated 360 times using a bicomponent method for projecting onto dictionary signals. For motion correction, we introduced MoCo MRF T1-FF, a modular protocol using the VoxelMorph neural network to estimate deformation fields between different respiratory phases. MoCo MRF T1-FF paves the way for the joint evaluation of the potential of fat fraction and water T1 in muscles that are rarely assessed, such as the diaphragm, and for multisystemic evaluation of neuromuscular diseases (muscular system, liver, kidney, etc.)
Barbieri, Marco <1991>. "Advances in the Role of Quantitative NMR in Medicine: Deep Learning applied to MR Fingerprinting and Trabecular Bone Volume Fraction Estimation through Single-Sided NMR". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amsdottorato.unibo.it/9236/1/Ph_D_Thesis_Marco_Barbieri.pdf.
Texto completo da fonteCoudert, Thomas. "IRM «fingerprint» et Intelligence Artificielle pour la prise en charge des patients victimes d'un AVC". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALY044.
Texto completo da fonteStroke, a major cause of mortality and long-term disability worldwide, necessitates rapid and accurate diagnosis to optimize treatment outcomes. Current imaging techniques, particularly MRI, are critical for assessing the extent of brain injury and guiding therapeutic interventions. However, traditional MRI protocols are often time-consuming and may lack the precision required for detailed analysis of ischemic brain tissue, limiting their utility in acute stroke settings where time is of the essence.Magnetic Resonance Fingerprinting (MRF) is a relatively new solution to simultaneously map several brain quantitative parameters from fast, high-resolution acquisitions using a dictionary search approach. However, its extension for microvascular (e.g. cerebral blood volume (CBV) or blood vessel diameter (R)) and brain oxygenation estimates currently relies on the injection of exogenous contrast agents (CA) that limit the clinical application and acquisition speed. In this thesis, we aimed to address these limitations by developing a novel and integrated, artificial intelligence (AI) augmented contrast-free MRF technique tailored for stroke emergencies.First, we developed and adapted standard multiparametric MRF techniques based on spoiled gradient echo MRI sequences. Using scanner artifacts corrections, dictionary compression, and subspace reconstruction, we were able to generate fast relaxometry (T1,T2) maps and standard MRI contrasts from a single MRF sequence. However, the microvascular information provided by our new multi-compartment MRF model in human volunteers suffered from a low signal-to-noise ratio.We thus focused on a new MRF sequence design based on balanced GRE sequences and their remarkable sensitivity to magnetic field inhomogeneities. After a theoretical and textit{in-silico} study on general sequences sensitivities to the Blood Oxygen Level Dependent (BOLD) effect and the impact of MRF acquisition parameters, we designed a new MRF-bSSFP sequence that simultaneously estimate relaxometry (T1,T2,T2*,M0), magnetic fields (B1,B0), and microvascular properties (CBV,R) without the need for CA injection. Using a new pipeline for MRF simulations, the proposed method was tested in a cohort of human volunteers.Our method was further refined by developing advanced reconstruction methods for high dimensional MRF acquisitions relying on low-rank models and deep neural networks. We finally used our simulation framework combined with Recurrent Neural Networks to fasten our computation times by a factor of 800 and allow the inclusion of water-diffusion effects. This approach was tested in retrospective preclinical data including healthy and stroke animals and the results suggested that additional estimates of ADC or blood oxygenation could be measured with our new bSSFP MRF sequence.After careful validation and optimization, this methodological work could provide an efficient imaging solution that aligns with the critical time constraints of acute stroke care. Our general framework for high dimensional MRF acquisitions that include microstructure effects could also be used in various other pathologies
Lin, Te-Ming, e 林德銘. "A method to evaluate the relationship between signal acquisition number and parametric mapping precision in MR fingerprinting". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/30205508647644523764.
Texto completo da fonte國立臺灣大學
生醫電子與資訊學研究所
103
MR Fingerprinting (MRF) is a novel technique to quantify multiple MR parameters simultaneously. A train of pseudorandomized radiofrequency (RF) excitations are used to generate unique signal evolution for different tissues, followed by matching the measured signals to a pre-established dictionary. The signal acquisition number in MRF is related to the signal length. Longer signals and larger dictionaries increase the scan time and computational complexity. However, as the signal acquisition reduces, the mapping precision also changes. Therefore, for designing an efficient MRF sequence, a method to evaluate the precision change is necessary. In this thesis, we propose a mapping variation index to reflect the mapping precision in MRF. Besides, this index can predict the precision change under different signal acquisition numbers before MRF scans and provide a reference for sequence designers to modify the signal acquisition number.
Capítulos de livros sobre o assunto "MR Fingerprinting"
Runge, Val M., e Johannes T. Heverhagen. "MR Fingerprinting". In The Physics of Clinical MR Taught Through Images, 312–13. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85413-3_141.
Texto completo da fonteChen, Yong, Christina J. MacAskill, Sherry Huang, Katherine M. Dell, Sree H. Tirumani, Mark A. Griswold e Chris A. Flask. "MR Fingerprinting for Quantitative Kidney Imaging". In Advanced Clinical MRI of the Kidney, 163–80. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-40169-5_12.
Texto completo da fonteChen, Dongdong, Mike E. Davies e Mohammad Golbabaee. "Compressive MR Fingerprinting Reconstruction with Neural Proximal Gradient Iterations". In Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 13–22. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59713-9_2.
Texto completo da fonteBalsiger, Fabian, Alain Jungo, Olivier Scheidegger, Benjamin Marty e Mauricio Reyes. "Learning Bloch Simulations for MR Fingerprinting by Invertible Neural Networks". In Machine Learning for Medical Image Reconstruction, 60–69. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61598-7_6.
Texto completo da fonteKang, Beomgu, Hye-Young Heo e HyunWook Park. "Only-Train-Once MR Fingerprinting for Magnetization Transfer Contrast Quantification". In Lecture Notes in Computer Science, 387–96. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-16446-0_37.
Texto completo da fonteBarrier, Antoine, Thomas Coudert, Aurélien Delphin, Benjamin Lemasson e Thomas Christen. "MARVEL: MR Fingerprinting with Additional micRoVascular Estimates Using Bidirectional LSTMs". In Lecture Notes in Computer Science, 259–69. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72069-7_25.
Texto completo da fonteCheng, Feng, Yong Chen, Xiaopeng Zong, Weili Lin, Dinggang Shen e Pew-Thian Yap. "Acceleration of High-Resolution 3D MR Fingerprinting via a Graph Convolutional Network". In Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 158–66. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59713-9_16.
Texto completo da fonteGómez, Pedro A., Miguel Molina-Romero, Cagdas Ulas, Guido Bounincontri, Jonathan I. Sperl, Derek K. Jones, Marion I. Menzel e Bjoern H. Menze. "Simultaneous Parameter Mapping, Modality Synthesis, and Anatomical Labeling of the Brain with MR Fingerprinting". In Lecture Notes in Computer Science, 579–86. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46726-9_67.
Texto completo da fonteCheng, Feng, Yong Chen, Xiaopeng Zong, Weili Lin, Dinggang Shen e Pew-Thian Yap. "Correction to: Acceleration of High-Resolution 3D MR Fingerprinting via a Graph Convolutional Network". In Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, C1. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59713-9_75.
Texto completo da fonteMa, Dan. "MR fingerprinting: concepts, implementation and applications". In Advances in Magnetic Resonance Technology and Applications, 435–49. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-822479-3.00044-0.
Texto completo da fonteTrabalhos de conferências sobre o assunto "MR Fingerprinting"
Li, Shizhuo, Huihui Ye e Huafeng Liu. "CRLB-Based Optimization for Combined FISP and PSIF MR Fingerprinting". In 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/isbi56570.2024.10635327.
Texto completo da fonteMa, Dan. "Clinical applications of fast and quantitative MR fingerprinting". In Biomedical Applications in Molecular, Structural, and Functional Imaging, editado por Barjor S. Gimi e Andrzej Krol. SPIE, 2023. http://dx.doi.org/10.1117/12.2664416.
Texto completo da fonteVenglovskyi, Iurii. "Single-Voxel Proton MR-Spectroscopy Signal Analysis by Fingerprinting". In 2021 13th International Conference on Measurement. IEEE, 2021. http://dx.doi.org/10.23919/measurement52780.2021.9446829.
Texto completo da fonteLi, Zehao, Min Li e Zhuo Zhang. "Accelerated MR Fingerprinting Reconstruction Using Dictionary and Local Low-Rank Regularizations". In 2021 7th International Conference on Computer and Communications (ICCC). IEEE, 2021. http://dx.doi.org/10.1109/iccc54389.2021.9674702.
Texto completo da fonteLi, Peng, e Yue Hu. "Mr Fingerprinting Reconstruction Using Structured Low-Rank Matrix Recovery And Subspace Modeling". In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE, 2021. http://dx.doi.org/10.1109/isbi48211.2021.9434120.
Texto completo da fonte"Accurate Dictionary Matching for MR Fingerprinting Using Neural Networks and Feature Extraction". In 2020 28th Signal Processing and Communications Applications Conference (SIU). IEEE, 2020. http://dx.doi.org/10.1109/siu49456.2020.9302455.
Texto completo da fonteLu, Hengfa, Huihui Ye e Bo Zhao. "Improved Balanced Steady-State Free Precession Based MR Fingerprinting with Deep Autoencoders". In 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2022. http://dx.doi.org/10.1109/embc48229.2022.9871003.
Texto completo da fonteHu, Dakun, Huihui Ye e Huafeng Liu. "gSlider RF encoded MR fingerprinting with thin slice thickness, high accuracy and reproducibility". In ICBET 2024: 2024 14th International Conference on Biomedical Engineering and Technology, 51–57. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3678935.3678944.
Texto completo da fonteKeil, V., S. Bakoeva, A. Jurcoane, P. Koken, M. Doneva, T. Amthor, B. Mädler, W. Block, H. Schild e E. Hattingen. "MR Fingerprinting: Wie vergleichbar ist die neuartige Mappingtechnik mit konventionellem T1 und T2 Mapping?" In 99. Deutscher Röntgenkongress. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1641420.
Texto completo da fonteKeil, V., S. Bakoeva, A. Jurcoane, T. Amthor, M. Doneva, P. Koken, B. Mädler, W. Block, H. Schild e E. Hattingen. "Quantitatives T1 und T2 Mapping mit MR Fingerprinting machen Alterungsprozesse des Gehirns mit geringem Aufwand messbar". In 99. Deutscher Röntgenkongress. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1641421.
Texto completo da fonte