Literatura científica selecionada sobre o tema "Motorneurone"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Motorneurone".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Motorneurone"
Braak, H., M. Neumann, A. Ludolph e K. Del Tredici. "Breitet sich die sporadisch auftretende amyotrophe Lateralsklerose über axonale Verbindungen aus?" Aktuelle Neurologie 44, n.º 06 (20 de julho de 2017): 409–14. http://dx.doi.org/10.1055/s-0043-111405.
Texto completo da fonteGUILOFF, R. J. "Use of TRH Analogues in Motorneurone Disease". Annals of the New York Academy of Sciences 553, n.º 1 Thyrotropin-R (março de 1989): 399–421. http://dx.doi.org/10.1111/j.1749-6632.1989.tb46662.x.
Texto completo da fontePall, HardevS, AdrianC Williams, Rosemary Waring e Elwyn Elias. "MOTORNEURONE DISEASE AS MANIFESTATION OF PESTICIDE TOXICITY". Lancet 330, n.º 8560 (setembro de 1987): 685. http://dx.doi.org/10.1016/s0140-6736(87)92468-8.
Texto completo da fonteJacobs, K., M. G. Todman, M. J. Allen, J. A. Davies e J. P. Bacon. "Synaptogenesis in the giant-fibre system of Drosophila: interaction of the giant fibre and its major motorneuronal target". Development 127, n.º 23 (1 de dezembro de 2000): 5203–12. http://dx.doi.org/10.1242/dev.127.23.5203.
Texto completo da fonteMills, K. "Update on ALS: assessing the upper motorneurone component". Clinical Neurophysiology 119 (maio de 2008): S8. http://dx.doi.org/10.1016/s1388-2457(08)60035-8.
Texto completo da fonteLeigh, P. N. "DS1.1 Motorneurone degeneration: ALS and its clinical variants". Clinical Neurophysiology 117 (setembro de 2006): 1. http://dx.doi.org/10.1016/j.clinph.2006.07.049.
Texto completo da fonteTissenbaum, H. A., e D. J. Parry. "The effect of partial denervation of tibialis anterior (TA) muscle on the number and sizes of motorneurons in TA motornucleus of normal and dystrophic (C57BL dy2j/dy2j) mice". Canadian Journal of Physiology and Pharmacology 69, n.º 11 (1 de novembro de 1991): 1769–73. http://dx.doi.org/10.1139/y91-261.
Texto completo da fonteAbbott, R. J., D. Holder e S. Currie. "FALSE POSITIVE ANTI ACETYLCHOLINE RECEPTOR ANTIBODIES IN MOTORNEURONE DISEASE". Lancet 327, n.º 8486 (abril de 1986): 906–7. http://dx.doi.org/10.1016/s0140-6736(86)91005-6.
Texto completo da fonteAshizawa, T. "FALSE POSITIVE ANTI-ACETYLCHOLINE RECEPTOR ANTIBODIES IN MOTORNEURONE DISEASE". Lancet 327, n.º 8492 (maio de 1986): 1272. http://dx.doi.org/10.1016/s0140-6736(86)91408-x.
Texto completo da fonteSpencer, PeterS, PeterB Nunn, Jacques Hugon, Albert Ludolph e DwijendraN Roy. "MOTORNEURONE DISEASE ON GUAM: POSSIBLE ROLE OF A FOOD NEUROTOXIN". Lancet 327, n.º 8487 (abril de 1986): 965. http://dx.doi.org/10.1016/s0140-6736(86)91059-7.
Texto completo da fonteTeses / dissertações sobre o assunto "Motorneurone"
Esmaeili, Behrooz. "The C.elegans even-skipped homologue vab-7 controls DB motorneurone fate". Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621089.
Texto completo da fontePinkernelle, Josephine [Verfasser], e Gerburg [Akademischer Betreuer] Keilhoff. "Etablierung eines in vitro-Modells zur Untersuchung der Regeneration spinaler Motorneurone und ihrer Axone nach Axotomie und Neurodegeneration / Josephine Pinkernelle. Betreuer: Gerburg Keilhoff". Magdeburg : Universitätsbibliothek, 2015. http://d-nb.info/1070276979/34.
Texto completo da fonteDraper, Christiana S. I. "ALS-induced Excitability Changes in Individual Motorneurons and the Spinal Motorneuron Network in SOD1-G93A Mice at Symptom Onset". Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1621064515386592.
Texto completo da fonteHancox, Julian C. "Non-linear membrane properties of insect motorneurones". Thesis, University of St Andrews, 1991. http://hdl.handle.net/10023/15029.
Texto completo da fonteUhler, Jennifer Pamela. "The development of dendritic arbors in Drosophila motorneurons". Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621930.
Texto completo da fonteBlair, Alex B. "Nervous System Remodeling in Drosophila: The fate of larval motorneurons". Miami University Honors Theses / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=muhonors1272045959.
Texto completo da fonteMauss, Alex Stefan. "Development and patterning of motorneuron dendrites in the Drosophila embryo". Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611196.
Texto completo da fonteClerc, Zoé. "Identification des mécanismes moléculaires de neuroprotection modulés par l’activité dans deux maladies du motoneurone". Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP5087.
Texto completo da fonteAmyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are two motor neuron (MN) diseases characterized by progressive muscle denervation, which can be fatal due to respiratory failure. In ALS, fast motor neurons (fMNs) are primarily affected, while in SMA, both fMNs and slow motor neurons (sMNs) degenerate. Subjecting adult mouse models of ALS (B6SJL-Tg(SOD1-G93A)1Gur/J) and type 3 SMA (FVB/NRj-SmnDelta7/Delta7, huSMN2+/+) to high-intensity swimming exercise, which activates fMNs, induced specific neuroprotection of fMNs in both diseases, while training to low-intensity running exercise, which activates sMNs, induced neuroprotection of sMNs in SMA only. These data suggest that only vulnerable MN populations activated by exercise are capable of implementing adaptations that enable them to survive. To test this hypothesis, we set out to develop two complementary mRNA isolation approaches, one focusing on fMNs and the other on exercise-activated MNs.The first consist on a CRE recombinase dependant-AAV9-based expression of a tagged Poly-A Binding Protein (PABP) under the control of the Calcitonin related Polypeptide Alpha (Calca), a spinal fMN marker. This adapted ctag-PAPERCLIP technique allows to immunoprecipitate mRNA from fMN in generated heterozygous Calca-CRE ALS and SMA mouse models. To this end, we developed three CRE-dependent PABP-Flag expression plasmids, two plasmids were selected for their expression efficiency and specificity after in vitro transfection of a murine MNal MN1 cell line and encapsidated in AAV9. Unfortunately, after intrathecal or intramuscular injection in non-mutant Calca-CRE mice in quantities ranging from 1,5E9 to 3,3E11 Vg per mouse, these two AAV9-PABP-Flag showed weak PABP-Flag expression efficiency, associated with a non-CRE-dependent leak of expression, therefore non-specific to fMN. Hence, this strategy could not be used in our study. The second approach consist on laser capture microdissection (LCM) of sMNs innervating three hindlimb muscles and activated by exercise labeled by the C-terminal fragment of tetanus toxin (TTC), a depolarization-dependant trans-synaptic retrograde tracer. Once more, neither the application of swimming exercise at different times, before and after intramuscular injection of TTC, nor the limitation of neuromuscular activity by immobilization succeeded in modifying TTC-labeled MNal populations, suggesting that TTC does not allow specific selection of exercise-activated MNr. We therefore decided to collect fMNs mRNA using Fluorogold (FG), a pan MN retrograde tracer, and to apply a somatic area filter >900µm² to the selected MN.This analysis suggested the development of specific cellular adaptations to swimming that contribute to the survival of vulnerable fMNs, such as modulation of RNA metabolism, protein homeostasis, neuronal excitability and synaptic functions. These adaptations would be initiated in part by fine modulation of the MAP Kinase signaling pathway involving effectors specific to each disease. Finally, our study suggests a major coordinating role, common to both diseases, for the PALM2-AKAP protein kinase A anchoring fusion gene. This work provides a better understanding of the neuroprotective mechanisms activated by exercise, a prerequisite for the development of new effective therapies
Zee, Michele Chi-Wai. "Steroid hormones and cell death : analysis of motorneuron and muscle fates during insect metamorphosis /". view abstract or download file of text, 2004. http://wwwlib.umi.com/cr/uoregon/fullcit?p3136456.
Texto completo da fonteTypescript. Includes vita and abstract. Includes bibliographical references (leaves 99-113). Also available for download via the World Wide Web; free to University of Oregon users.
Sánchez-Alvarez, Leticia. "Planar Cell Polarity Genes prkl-1 and dsh-1 Polarize C. Elegans Motorneurons during Organogenesis". Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23513.
Texto completo da fonteLivros sobre o assunto "Motorneurone"
Larsen, DeLaine D. The genetic regulation of sex-specific motorneurons by the doublesex gene in Drosophila melanogaster and the genetic characterization of an interaction with the sex determination hierarchy. 1998.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Motorneurone"
Pinelli, P., C. Pasetti, L. Mazzini, F. Pisano e A. Villani. "Motorneuron Sprouting and Spinal Plasticity in Amyotrophic Lateral Sclerosis: The “Window of Opportunity” for a Ganglioside Treatment". In Gangliosides and Neuronal Plasticity, 453–60. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4757-5309-7_37.
Texto completo da fontePellizzari, R., e O. Rossetto. "Tetanus neurotoxin (Clostridium tetani)". In Guidebook to Protein Toxins and Their Use in Cell Biology, 100–102. Oxford University PressOxford, 1997. http://dx.doi.org/10.1093/oso/9780198599555.003.0034.
Texto completo da fonteRossetto, O., e R. Pellizzari. "Botulinum neurotoxins type A and E (Clostridium botulinum)". In Guidebook to Protein Toxins and Their Use in Cell Biology, 105–6. Oxford University PressOxford, 1997. http://dx.doi.org/10.1093/oso/9780198599555.003.0036.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Motorneurone"
Buono, Pietro-Luciano. "Heart Motorneuron Dynamics of Leeches". In EXPERIMENTAL CHAOS: 7th Experimental Chaos Conference. AIP, 2003. http://dx.doi.org/10.1063/1.1612221.
Texto completo da fonteGaravaglia, Lorenzo, Erika Molteni, Elena Beretta, Elena Vassena, Sandra Strazzer e Simone Pittaccio. "Pilot study of the cortical correlates and clinical effects of passive ankle mobilisation in children with upper motorneuron lesions". In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015. http://dx.doi.org/10.1109/embc.2015.7319909.
Texto completo da fonte