Teses / dissertações sobre o tema "Monte Carlo sampling and estimation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores trabalhos (teses / dissertações) para estudos sobre o assunto "Monte Carlo sampling and estimation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja as teses / dissertações das mais diversas áreas científicas e compile uma bibliografia correta.
Chen, Wen-shiang. "Bayesian estimation by sequential Monte Carlo sampling for nonlinear dynamic systems". Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1086146309.
Texto completo da fonteTitle from first page of PDF file. Document formatted into pages; contains xiv, 117 p. : ill. (some col.). Advisors: Bhavik R. Bakshi and Prem K. Goel, Department of Chemical Engineering. Includes bibliographical references (p. 114-117).
Gilabert, Navarro Joan Francesc. "Estimation of binding free energies with Monte Carlo atomistic simulations and enhanced sampling". Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669282.
Texto completo da fonteEls grans avenços en la capacitat de computació han motivat l'esperança que els mètodes de simulacions per ordinador puguin accelerar el ritme de descobriment de nous fàrmacs. Per a què això sigui possible, es necessiten eines ràpides, acurades i fàcils d'utilitzar. Un dels problemes que han rebut més atenció és el de la predicció d'energies lliures d'unió entre proteïna i lligand. Dos grans problemes han estat identificats per a aquests mètodes: la falta de mostreig i les aproximacions dels models. Aquesta tesi està enfocada a resoldre el primer problema. Per a això, presentem el desenvolupament de mètodes eficients per a l'estimació de d'energies lliures d'unió entre proteïna i lligand. Hem desenvolupat un protocol que combina mètodes anomenats enhanced sampling amb simulació clàssiques per a obtenir una major eficiència. Els mètodes d'enhanced sampling són una classe d'eines que apliquen algun tipus de pertorbació externa al sistema que s'està estudiant per tal d'accelerar-ne el mostreig. En el nostre protocol, primer correm una simulació exploratòria d'enhanced sampling, començant per una mostra de la unió de la proteïna i el lligand. Aquesta simulació esta parcialment esbiaixada cap a aquells estats del sistema on els dos components es troben més separats. Després utilitzem la informació obtinguda d'aquesta primera simulació més curta per a córrer una segona simulació més llarga, amb mètodes sense biaix per obtenir una estadística fidedigna del sistema. Gràcies a la modularitat i el grau d'automatització que la implementació del protocol ofereix, hem pogut provar tres mètodes diferents per les simulacions llargues: PELE, dinàmica molecular i AdaptivePELE. PELE i dinàmica molecular han mostrat resultats similars, tot i que PELE utilitza menys recursos. Els dos han mostrat bons resultats en l'estudi de sistemes de fragments o amb proteïnes amb llocs d'unió poc flexibles. Però, els dos han fallat a l'hora de reproduir els resultats experimentals per a una quinasa, la Mitogen-activated protein kinase 1 (ERK2). D'altra banda, AdaptivePELE no ha mostrat una gran millora respecte a PELE, amb resultats positius per a la proteïna Urokinase-type plasminogen activator (URO) i una clara falta de mostreig per al receptor de progesterona (PR). En aquest treball hem demostrat la importància d'establir un banc de proves equilibrat durant el desenvolupament de nous mètodes. Mitjançant l'ús d'un banc de proves divers hem pogut establir en quins casos es pot esperar que el protocol obtingui resultats acurats, i quines àrees necessiten més desenvolupament. El banc de proves ha consistit de quatre proteïnes i més de trenta lligands, molt més dels que comunament s'utilitzen en el desenvolupament de mètodes per a la predicció d'energies d'unió mitjançant mètodes basats en camins (pathway-based). En resum, la metodologia desenvolupada durant aquesta tesi pot contribuir al procés de recerca de nous fàrmacs per a certs tipus de sistemes de proteïnes. Per a la resta, hem observat que els mètodes de simulació no esbiaixats no són prou eficients i tècniques més sofisticades són necessàries.
Xu, Nuo. "A Monte Carlo Study of Single Imputation in Survey Sampling". Thesis, Örebro universitet, Handelshögskolan vid Örebro Universitet, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-30541.
Texto completo da fontePtáček, Martin. "Spatial Function Estimation with Uncertain Sensor Locations". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-449288.
Texto completo da fonteDiop, Khadim. "Estimation de la fiabilité d'un palier fluide". Thesis, Angers, 2015. http://www.theses.fr/2015ANGE0029/document.
Texto completo da fonteThese research is a contribution to the development of reliability theory in fluid mechanics. For the machines design and complex mechatronic systems, many fluid components are used. These components have static and dynamic sensitive characteristics and thus have a great significance on the reliabilityand lifetime of the machines and systems. Development performed focuses specifically on the reliability evaluation of a fluid bearing using a"fluid mechanics - reliability" interaction approach. This coupling requires a specific definition of the limit state function for estimating the failure probability of a fluid bearing. The Reynolds equation permits to determine the fluid bearing load capacity according to the operating conditions. Several simple geometries of fluid bearings were modeled analytically and their failure probabilities were estimated using the approximation methods FORM / SORM (First Order Reliability Method,Second Order Reliability Method) and Monte Carlo simulation
Greer, Brandi A. Young Dean M. "Bayesian and pseudo-likelihood interval estimation for comparing two Poisson rate parameters using under-reported data". Waco, Tex. : Baylor University, 2008. http://hdl.handle.net/2104/5283.
Texto completo da fonteThajeel, Jawad. "Kriging-based Approaches for the Probabilistic Analysis of Strip Footings Resting on Spatially Varying Soils". Thesis, Nantes, 2017. http://www.theses.fr/2017NANT4111/document.
Texto completo da fonteThe probabilistic analysis of geotechnical structures involving spatially varying soil properties is generally performed using Monte Carlo Simulation methodology. This method is not suitable for the computation of the small failure probabilities encountered in practice because it becomes very time-expensive in such cases due to the large number of simulations required to calculate accurate values of the failure probability. Three probabilistic approaches (named AK-MCS, AK-IS and AK-SS) based on an Active learning and combining Kriging and one of the three simulation techniques (i.e. Monte Carlo Simulation MCS, Importance Sampling IS or Subset Simulation SS) were developed. Within AK-MCS, a Monte Carlo simulation without evaluating the whole population is performed. Indeed, the population is predicted using a kriging meta-model which is defined using only a few points of the population thus significantly reducing the computation time with respect to the crude MCS. In AK-IS, a more efficient sampling technique ‘IS’ is used instead of ‘MCS’. In the framework of this approach, the small failure probability is estimated with a similar accuracy as AK-MCS but using a much smaller size of the initial population, thus significantly reducing the computation time. Finally, in AK-SS, a more efficient sampling technique ‘SS’ is proposed. This technique overcomes the search of the design points and thus it can deal with arbitrary shapes of the limit state surfaces. All the three methods were applied to the case of a vertically loaded strip footing resting on a spatially varying soil. The obtained results are presented and discussed
Wu, Yi-Fang. "Accuracy and variability of item parameter estimates from marginal maximum a posteriori estimation and Bayesian inference via Gibbs samplers". Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/5879.
Texto completo da fonteArgouarc, h. Elouan. "Contributions to posterior learning for likelihood-free Bayesian inference". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAS021.
Texto completo da fonteBayesian posterior inference is used in many scientific applications and is a prevalent methodology for decision-making under uncertainty. It enables practitioners to confront real-world observations with relevant observation models, and in turn, infer the distribution over an explanatory variable. In many fields and practical applications, we consider ever more intricate observation models for their otherwise scientific relevance, but at the cost of intractable probability density functions. As a result, both the likelihood and the posterior are unavailable, making posterior inference using the usual Monte Carlo methods unfeasible.In this thesis, we suppose that the observation model provides a recorded dataset, and our aim is to bring together Bayesian inference and statistical learning methods to perform posterior inference in a likelihood-free setting. This problem, formulated as learning an approximation of a posterior distribution, includes the usual statistical learning tasks of regression and classification modeling, but it can also be an alternative to Approximate Bayesian Computation methods in the context of simulation-based inference, where the observation model is instead a simulation model with implicit density.The aim of this thesis is to propose methodological contributions for Bayesian posterior learning. More precisely, our main goal is to compare different learning methods under the scope of Monte Carlo sampling and uncertainty quantification.We first consider the posterior approximation based on the likelihood-to-evidence ratio, which has the main advantage that it turns a problem of conditional density learning into a problem of binary classification. In the context of Monte Carlo sampling, we propose a methodology for sampling from such a posterior approximation. We leverage the structure of the underlying model, which is conveniently compatible with the usual ratio-based sampling algorithms, to obtain straightforward, parameter-free, and density-free sampling procedures.We then turn to the problem of uncertainty quantification. On the one hand, normalized models such as the discriminative construction are easy to apply in the context of Bayesian uncertainty quantification. On the other hand, while unnormalized models, such as the likelihood-to-evidence-ratio, are not easily applied in uncertainty-aware learning tasks, a specific unnormalized construction, which we refer to as generative, is indeed compatible with Bayesian uncertainty quantification via the posterior predictive distribution. In this context, we explain how to carry out uncertainty quantification in both modeling techniques, and we then propose a comparison of the two constructions under the scope of Bayesian learning.We finally turn to the problem of parametric modeling with tractable density, which is indeed a requirement for epistemic uncertainty quantification in generative and discriminative modeling methods. We propose a new construction of a parametric model, which is an extension of both mixture models and normalizing flows. This model can be applied to many different types of statistical problems, such as variational inference, density estimation, and conditional density estimation, as it benefits from rapid and exact density evaluation, a straightforward sampling scheme, and a gradient reparameterization approach
Kastner, Gregor, e Sylvia Frühwirth-Schnatter. "Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Estimation of Stochastic Volatility Models". WU Vienna University of Economics and Business, 2013. http://epub.wu.ac.at/3771/1/paper.pdf.
Texto completo da fonteSeries: Research Report Series / Department of Statistics and Mathematics
Chéhab, L'Émir Omar. "Advances in Self-Supervised Learning : applications to neuroscience and sample-efficiency". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG079.
Texto completo da fonteSelf-supervised learning has gained popularity as a method for learning from unlabeled data. Essentially, it involves creating and then solving a prediction task using the data, such as reordering shuffled data. In recent years, this approach has been successful in training neural networks to learn useful representations from data, without any labels. However, our understanding of what is actually being learned and how well it is learned is still somewhat limited. This document contributes to our understanding of self-supervised learning in these two key aspects.Empirically, we address the question of what is learned. We design prediction tasks specifically tailored to learning from brain recordings with magnetoencephalography (MEG) or electroencephalography (EEG). These prediction tasks share a common objective: recognizing temporal structure within the brain data. Our results show that representations learnt by solving these tasks contain interpretable cognitive and clinical neurophysiological features.Theoretically, we explore the quality of the learning procedure. Our focus is on a specific category of prediction tasks: binary classification. We extend prior research that has highlighted the utility of binary classification for statistical inference, though it may involve trading off some measure of statistical efficiency for another measure of computational efficiency. Our contributions aim to improve statistical efficiency. We theoretically analyze the statistical estimation error and find situations when it can be provably reduced. Specifically, we characterize optimal hyperparameters of the binary classification task and also prove that the popular heuristic of "annealing" can lead to more efficient estimation, even in high dimensions
Vo, Brenda. "Novel likelihood-free Bayesian parameter estimation methods for stochastic models of collective cell spreading". Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/99588/1/Brenda_Vo_Thesis.pdf.
Texto completo da fonteSebastian, Shalin. "Empirical evaluation of Monte Carlo sampling /". Available to subscribers only, 2005. http://proquest.umi.com/pqdweb?did=1075709431&sid=9&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Texto completo da fonteEkwegh, Ijeoma W. "Newsvendor Models With Monte Carlo Sampling". Digital Commons @ East Tennessee State University, 2016. https://dc.etsu.edu/etd/3125.
Texto completo da fonteKaragulyan, Avetik. "Sampling with the Langevin Monte-Carlo". Electronic Thesis or Diss., Institut polytechnique de Paris, 2021. http://www.theses.fr/2021IPPAG002.
Texto completo da fonteSampling from probability distributions is a problem of significant importance in Statistics and Machine Learning. The approaches for the latter can be roughly classified into two main categories, that is the frequentist and the Bayesian. The first is the MLE or ERM which boils down to optimization, while the other requires the integration of the posterior distribution. Approximate sampling methods are hence applied to estimate the integral. In this manuscript, we focus mainly on Langevin sampling which is based on discretizations of Langevin SDEs. The first half of the introductory part presents the general mathematical framework of statistics and optimization, while the rest aims at the historical background and mathematical development of sampling algorithms.The first main contribution provides non-asymptotic bounds on convergence LMC in Wasserstein error. We first prove the bounds for LMC with the time-varying step. Then we establish bounds in the case when the gradient is available with a noise. In the end, we study the convergence of two versions of discretization, when the Hessian of the potential is regular.In the second main contribution, we study the sampling from log-concave (non-strongly) distributions using LMC, KLMC, and KLMC with higher-order discretization. We propose a constant square penalty for the potential function. We then prove non-asymptotic bounds in Wasserstein distances and provide the optimal choice of the penalization parameter. In the end, we highlight the importance of scaling the error for different error measures.The third main contribution focuses on the convergence properties of convex Langevin diffusions. We propose to penalize the drift with a linear term that vanishes over time. Explicit bounds on the convergence error in Wasserstein distance are proposed for the PenalizedLangevin Dynamics and Penalized Kinetic Langevin Dynamics. Also, similar bounds are proved for the Gradient Flow of convex functions
Hörmann, Wolfgang, e Josef Leydold. "Monte Carlo Integration Using Importance Sampling and Gibbs Sampling". Department of Statistics and Mathematics, Abt. f. Angewandte Statistik u. Datenverarbeitung, WU Vienna University of Economics and Business, 2005. http://epub.wu.ac.at/1642/1/document.pdf.
Texto completo da fonteSeries: Preprint Series / Department of Applied Statistics and Data Processing
Han, Xiao-liang. "Markov Chain Monte Carlo and sampling efficiency". Thesis, University of Bristol, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333974.
Texto completo da fonteNilmeier, Jerome P. "Monte Carlo methods for sampling protein configurations". Diss., Search in ProQuest Dissertations & Theses. UC Only, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3324625.
Texto completo da fonteAhmed, Ilyas. "Importance Sampling for Least-Square Monte Carlo Methods". Thesis, KTH, Matematisk statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-193080.
Texto completo da fontePrissättning av amerikanska optioner är utmanande på grund av att man har rätten att lösa in optionen innan och fram till löptidens slut. Det betingade väntevärdet i Snell envelopet, känd som fortsättningsvärdet approximeras med basfunktioner i Least-Square Monte Carlo-algoritmen som ger robust uppskattning av optionspriset. Genom att byta mått i den underliggande geometriska Browniska rörelsen med Importance Sampling så kan variansen av optionspriset minskas med upp till 9 gånger. Att hitta den optimala skattningen som ger en minimal varians av optionspriset kräver en noggrann omtanke om referenspriset utan att skattningen blir för skev. I detta arbete används en stokastisk algoritm för att hitta den optimala driften som minimerar det andra momentet i uttrycket av variansen efter måttbyte. Användningen av Importance Sampling har visat sig ge en signifikant minskning av varians jämfört med den vanliga Least-Square Monte Carlometoden. Däremot kan importance sampling vara ett bättre alternativ för mer komplexa instrument där man har rätten at lösa in instrumentet fram till löptidens slut.
Boualem, Abdelbassit. "Estimation de distribution de tailles de particules par techniques d'inférence bayésienne". Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2030/document.
Texto completo da fonteThis research work treats the inverse problem of particle size distribution (PSD) estimation from dynamic light scattering (DLS) data. The current DLS data analysis methods have bad estimation results repeatability and poor ability to separate the components (resolution) of a multimodal sample of particles. This thesis aims to develop new and more efficient estimation methods based on Bayesian inference techniques by taking advantage of the angular diversity of the DLS data. First, we proposed a non-parametric method based on a free-form model with the disadvantage of requiring a priori knowledge of the PSD support. To avoid this problem, we then proposed a parametric method based on modelling the PSD using a Gaussian mixture model. The two proposed Bayesian methods use Markov chain Monte Carlo simulation algorithms. The obtained results, on simulated and real DLS data, show the capability of the proposed methods to estimate multimodal PSDs with high resolution and better repeatability. We also computed the Cramér-Rao bounds of the Gaussian mixture model. The results show that there are preferred angle values ensuring minimum error on the PSD estimation
Schäfer, Christian. "Monte Carlo methods for sampling high-dimensional binary vectors". Phd thesis, Université Paris Dauphine - Paris IX, 2012. http://tel.archives-ouvertes.fr/tel-00767163.
Texto completo da fonteGiacomuzzi, Genny <1984>. "Local Earthquake Tomography by trans-dimensional Monte Carlo Sampling". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5160/1/giacomuzzi_genny_tesi.pdf.
Texto completo da fonteGiacomuzzi, Genny <1984>. "Local Earthquake Tomography by trans-dimensional Monte Carlo Sampling". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5160/.
Texto completo da fonteVadrevu, Aditya M. "Random sampling estimates of fourier transforms antithetical stratified Monte Carlo /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p1450161.
Texto completo da fonteTitle from first page of PDF file (viewed Mar. 27, 2008). Available via ProQuest Digital Dissertations. Includes bibliographical references (p. 33-34).
Hörmann, Wolfgang, e Josef Leydold. "Importance Sampling to Accelerate the Convergence of Quasi-Monte Carlo". Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 2007. http://epub.wu.ac.at/284/1/document.pdf.
Texto completo da fonteSeries: Research Report Series / Department of Statistics and Mathematics
Anderson, Luke (Luke James). "An embedded domain specific sampling language for Monte Carlo rendering". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111909.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 95-96).
Implementing Monte Carlo integration requires significant domain expertise. While simple algorithms, such as unidirectional path tracing, are relatively forgiving, more complex algorithms, such as bidirectional path tracing or Metropolis methods, are notoriously difficult to implement correctly. We propose a domain specific language for Monte Carlo rendering that offers primitives and data structures for writing concise and correct-by-construction sampling code. The compiler then automatically generates the necessary code for evaluating PDFs and combining multiple samples. Our language focuses on ease of implementation for rapid exploration and research, at the cost of run time performance. We demonstrate the effectiveness of the language by implementing several challenging rendering algorithms, as well as a new algorithm, which would otherwise be prohibitively difficult to implement.
by Luke Anderson.
S.M.
Guha, Subharup. "Benchmark estimation for Markov Chain Monte Carlo samplers". The Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=osu1085594208.
Texto completo da fonteArnold, Andrea. "Sequential Monte Carlo Parameter Estimation for Differential Equations". Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1396617699.
Texto completo da fonteMotula, Paulo Fernando Nericke. "Estimation of DSGE Models: A Monte Carlo Analysis". reponame:Repositório Institucional do FGV, 2013. http://hdl.handle.net/10438/10961.
Texto completo da fonteApproved for entry into archive by Janete de Oliveira Feitosa (janete.feitosa@fgv.br) on 2013-07-03T13:29:49Z (GMT) No. of bitstreams: 1 Dissertacao - Paulo Motula.pdf: 1492951 bytes, checksum: d60fce8c6165733b9666076aef7e2a75 (MD5)
Approved for entry into archive by Marcia Bacha (marcia.bacha@fgv.br) on 2013-07-09T19:35:20Z (GMT) No. of bitstreams: 1 Dissertacao - Paulo Motula.pdf: 1492951 bytes, checksum: d60fce8c6165733b9666076aef7e2a75 (MD5)
Made available in DSpace on 2013-07-09T19:40:59Z (GMT). No. of bitstreams: 1 Dissertacao - Paulo Motula.pdf: 1492951 bytes, checksum: d60fce8c6165733b9666076aef7e2a75 (MD5) Previous issue date: 2013-06-18
We investigate the small sample properties and robustness of the parameter estimates of DSGE models. Our test ground is the Smets and Wouters (2007)'s model and the estimation procedures we evaluate are the Simulated Method of Moments (SMM) and Maximum Likelihood (ML). We look at the empirical distributions of the parameter estimates and their implications for impulse-response and variance decomposition in the cases of correct specification and two types of misspecification. Our results indicate an overall poor performance of SMM and some patterns of bias in impulse-response and variance decomposition for ML under the types of misspecification studied.
Neste trabalho investigamos as propriedades em pequena amostra e a robustez das estimativas dos parâmetros de modelos DSGE. Tomamos o modelo de Smets and Wouters (2007) como base e avaliamos a performance de dois procedimentos de estimação: Método dos Momentos Simulados (MMS) e Máxima Verossimilhança (MV). Examinamos a distribuição empírica das estimativas dos parâmetros e sua implicação para as análises de impulso-resposta e decomposição de variância nos casos de especificação correta e má especificação. Nossos resultados apontam para um desempenho ruim de MMS e alguns padrões de viés nas análises de impulso-resposta e decomposição de variância com estimativas de MV nos casos de má especificação considerados.
Hörmann, Wolfgang, e Josef Leydold. "Quasi Importance Sampling". Department of Statistics and Mathematics, Abt. f. Angewandte Statistik u. Datenverarbeitung, WU Vienna University of Economics and Business, 2005. http://epub.wu.ac.at/1394/1/document.pdf.
Texto completo da fonteSeries: Preprint Series / Department of Applied Statistics and Data Processing
VIEIRA, WILSON J. "A General study of undersampling problems in Monte Carlo calculations". reponame:Repositório Institucional do IPEN, 1989. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10258.
Texto completo da fonteMade available in DSpace on 2014-10-09T13:59:11Z (GMT). No. of bitstreams: 1 03975.pdf: 1920852 bytes, checksum: 4a74905dfb7a4bb657984043110cfa4f (MD5)
Tese (Doutoramento)
IPEN/T
University of Tennessee, Knoxville, USA
Karawatzki, Roman, e Josef Leydold. "Automatic Markov Chain Monte Carlo Procedures for Sampling from Multivariate Distributions". Department of Statistics and Mathematics, Abt. f. Angewandte Statistik u. Datenverarbeitung, WU Vienna University of Economics and Business, 2005. http://epub.wu.ac.at/294/1/document.pdf.
Texto completo da fonteSeries: Preprint Series / Department of Applied Statistics and Data Processing
Karawatzki, Roman, Josef Leydold e Klaus Pötzelberger. "Automatic Markov Chain Monte Carlo Procedures for Sampling from Multivariate Distributions". Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 2005. http://epub.wu.ac.at/1400/1/document.pdf.
Texto completo da fonteSeries: Research Report Series / Department of Statistics and Mathematics
Pierre-Louis, Péguy. "Algorithmic Developments in Monte Carlo Sampling-Based Methods for Stochastic Programming". Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/228433.
Texto completo da fonteSingh, Gurprit. "Sampling and Variance Analysis for Monte Carlo Integration in Spherical Domain". Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10121/document.
Texto completo da fonteThis dissertation introduces a theoretical framework to study different sampling patterns in the spherical domain and their effects in the evaluation of global illumination integrals. Evaluating illumination (light transport) is one of the most essential aspect in image synthesis to achieve realism which involves solving multi-dimensional space integrals. Monte Carlo based numerical integration schemes are heavily employed to solve these high dimensional integrals. One of the most important aspect of any numerical integration method is sampling. The way samples are distributed on an integration domain can greatly affect the final result. For example, in images, the effects of various sampling patterns appear in the form of either structural artifacts or completely unstructured noise. In many cases, we may get completely false (biased) results due to the sampling pattern used in integration. The distribution of sampling patterns can be characterized using their Fourier power spectra. It is also possible to use the Fourier power spectrum as input, to generate the corresponding sample distribution. This further allows spectral control over the sample distributions. Since this spectral control allows tailoring new sampling patterns directly from the input Fourier power spectrum, it can be used to improve error in integration. However, a direct relation between the error in Monte Carlo integration and the sampling power spectrum is missing. In this work, we propose a variance formulation, that establishes a direct link between the variance in Monte Carlo integration and the power spectra of both the sampling pattern and the integrand involved. To derive our closed-form variance formulation, we use the notion of homogeneous sample distributions that allows expression of error in Monte Carlo integration, only in the form of variance. Based on our variance formulation, we develop an analysis tool that can be used to derive theoretical variance convergence rates of various state-of-the-art sampling patterns. Our analysis gives insights to design principles that can be used to tailor new sampling patterns based on the integrand
Janati, el idrissi Yazid. "Monte Carlo Methods for Machine Learning : Practical and Theoretical Contributions for Importance Sampling and Sequential Methods". Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAS008.
Texto completo da fonteThis thesis contributes to the vast domain of Monte Carlo methods with novel algorithms that aim at adressing high dimensional inference and uncertainty quantification. In a first part, we develop two novel methods for Importance Sampling. The first algorithm is a lightweight optimization based proposal for computing normalizing constants and which extends into a novel MCMC algorithm. The second one is a new scheme for learning sharp importance proposals. In a second part, we focus on Sequential Monte Carlo methods. We develop new estimators for the asymptotic variance of the particle filter and provide the first estimator of the asymptotic variance of a particle smoother. Next, we derive a procedure for parameter learning within hidden Markov models using a particle smoother with provably reduced bias. Finally, we devise a Sequential Monte Carlo algorithm for solving Bayesian linear inverse problems with generative model priors
Quartetti, Douglas A. "A Monte Carlo assessment of estimation in utility analysis". Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/29371.
Texto completo da fonteSong, Chenxiao. "Monte Carlo Variance Reduction Methods with Applications in Structural Reliability Analysis". Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29801.
Texto completo da fonteHörmann, Wolfgang. "New Importance Sampling Densities". Department of Statistics and Mathematics, Abt. f. Angewandte Statistik u. Datenverarbeitung, WU Vienna University of Economics and Business, 2005. http://epub.wu.ac.at/1066/1/document.pdf.
Texto completo da fonteSeries: Preprint Series / Department of Applied Statistics and Data Processing
Zhang, Dali. "Stochastic equilibrium problems with equilibrium constraints, Monte Carlo sampling method and applications". Thesis, University of Southampton, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509541.
Texto completo da fonteUstun, Berk (Tevfik Berk). "The Markov chain Monte Carlo approach to importance sampling in stochastic programming". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/85220.
Texto completo da fonteThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 85-87).
Stochastic programming models are large-scale optimization problems that are used to facilitate decision-making under uncertainty. Optimization algorithms for such problems need to evaluate the expected future costs of current decisions, often referred to as the recourse function. In practice, this calculation is computationally difficult as it involves the evaluation of a multidimensional integral whose integrand is an optimization problem. Accordingly, the recourse function is estimated using quadrature rules or Monte Carlo methods. Although Monte Carlo methods present numerous computational benefits over quadrature rules, they require a large number of samples to produce accurate results when they are embedded in an optimization algorithm. We present an importance sampling framework for multistage stochastic programming that can produce accurate estimates of the recourse function using a fixed number of samples. Our framework uses Markov Chain Monte Carlo and Kernel Density Estimation algorithms to create a non-parametric importance sampling distribution that can form lower variance estimates of the recourse function. We demonstrate the increased accuracy and efficiency of our approach using numerical experiments in which we solve variants of the Newsvendor problem. Our results show that even a simple implementation of our framework produces highly accurate estimates of the optimal solution and optimal cost for stochastic programming models, especially those with increased variance, multimodal or rare-event distributions.
by Berk Ustun.
S.M.
Hazelton, Martin Luke. "Method of density estimation with application to Monte Carlo methods". Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334850.
Texto completo da fonteWong, Mei Ning. "Quasi-Monte Carlo sampling for computing the trace of a function of a matrix". HKBU Institutional Repository, 2002. http://repository.hkbu.edu.hk/etd_ra/436.
Texto completo da fonteBentley, Jason Phillip. "Exact Markov chain Monte Carlo and Bayesian linear regression". Thesis, University of Canterbury. Mathematics and Statistics, 2009. http://hdl.handle.net/10092/2534.
Texto completo da fonteCline, David. "Sampling Methods in Ray-Based Global Illumination". Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd2056.pdf.
Texto completo da fonteHudson-Curtis, Buffy L. "Generalizations of the Multivariate Logistic Distribution with Applications to Monte Carlo Importance Sampling". NCSU, 2001. http://www.lib.ncsu.edu/theses/available/etd-20011101-224634.
Texto completo da fonteMonte Carlo importance sampling is a useful numerical integration technique, particularly in Bayesian analysis. A successful importance sampler will mimic the behavior of the posterior distribution, not only in the center, where most of the mass lies, but also in the tails (Geweke, 1989). Typically, the Hessian of the importance sampler is set equal to the Hessian of the posterior distribution evaluated at the mode. Since the importance sampling estimates are weighted averages, their accuracy is assessed by assuming a normal limiting distribution. However, if this scaling of the Hessian leads to a poor match in the tails of the posterior, this assumption may be false (Geweke, 1989). Additionally, in practice, two commonly used importance samplers, the Multivariate Normal Distribution and the Multivariate Student-t Distribution, do not perform well for a number of posterior distributions (Monahan, 2000). A generalization of the Multivariate Logistic Distribution (the Elliptical Multivariate Logistic Distribution) is described and its properties explored. This distribution outperforms the Multivariate Normal distribution and the Multivariate Student-t distribution as an importance sampler for several posterior distributions chosen from the literature. A modification of the scaling by Hessians of the importance sampler and the posterior distribution is explained. Employing this alternate relationship increases the number of posterior distributions for which the Multivariate Normal, the Multivariate Student-t, and the Elliptical Multivariate Logistic Distribution can serve as importance samplers.
Hu, Xinran. "On Grouped Observation Level Interaction and a Big Data Monte Carlo Sampling Algorithm". Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/51224.
Texto completo da fontePh. D.
Gilquin, Laurent. "Échantillonnages Monte Carlo et quasi-Monte Carlo pour l'estimation des indices de Sobol' : application à un modèle transport-urbanisme". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM042/document.
Texto completo da fonteLand Use and Transportation Integrated (LUTI) models have become a norm for representing the interactions between land use and the transportation of goods and people in a territory. These models are mainly used to evaluate alternative planning scenarios, simulating their impact on land cover and travel demand.LUTI models and other mathematical models used in various fields are most of the time based on complex computer codes. These codes often involve poorly-known inputs whose uncertainty can have significant effects on the model outputs.Global sensitivity analysis methods are useful tools to study the influence of the model inputs on its outputs. Among the large number of available approaches, the variance based method introduced by Sobol' allows to calculate sensitivity indices called Sobol' indices. These indices quantify the influence of each model input on the outputs and can detect existing interactions between inputs.In this framework, we favor a particular method based on replicated designs of experiments called replication method. This method appears to be the most suitable for our application and is advantageous as it requires a relatively small number of model evaluations to estimate first-order or second-order Sobol' indices.This thesis focuses on extensions of the replication method to face constraints arising in our application on the LUTI model Tranus, such as the presence of dependency among the model inputs, as far as multivariate outputs.Aside from that, we propose a recursive approach to sequentially estimate Sobol' indices. The recursive approach is based on the iterative construction of stratified designs, latin hypercubes and orthogonal arrays, and on the definition of a new stopping criterion. With this approach, more accurate Sobol' estimates are obtained while recycling previous sets of model evaluations. We also propose to combine such an approach with quasi-Monte Carlo sampling.An application of our contributions on the LUTI model Tranus is presented
Kuhlenschmidt, Bernd. "On the stability of sequential Monte Carlo methods for parameter estimation". Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709098.
Texto completo da fonteBarata, Teresa Cordeiro Ferreira Nunes. "Two examples of curve estimation using Markov Chain Monte Carlo methods". Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612139.
Texto completo da fonte