Siga este link para ver outros tipos de publicações sobre o tema: Monoclonal.

Artigos de revistas sobre o tema "Monoclonal"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Monoclonal".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Panda, Manasi. "Rabies-Monoclonal Antibody - A Perspective". Journal of Communicable Diseases 54, n.º 03 (30 de setembro de 2022): 22–26. http://dx.doi.org/10.24321/0019.5138.202285.

Texto completo da fonte
Resumo:
Rabies is an acute viral zoonotic disease that affects the central nervous system (CNS) of all warm-blooded animals, including mammals. Research studies and experience from across the world have demonstrated that appropriate administration of a combination of (a) local wound treatment, (b) anti-rabies vaccination and (c) passive immunization have proved to be quite effective in preventing the occurrence of rabies. As far as passive immunization is concerned, polyclonal plasma-derived rabies immunoglobulins (RIG) pose a number of limitations with scarce supply, high cost, etc. amongst many others. On the contrary Rabies Monoclonal Antibodies (R-mAb) are much cheaper, permit longer-term storage, etc. and hence could offer a more standardized, accessible, affordable and equally efficacious and safer alternative to RIG. Accordingly, this article has tried to throw light on the transition from RIG to monoclonal antibody-based Post Exposure Prophylaxis (PEP) which has been recommended by the WHO strongly. The advantages, limitations and future scope of R-mAb have been discussed at length to give a comprehensive idea about this novel invention in the field of medicine.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Bauvois, Adeline, Mélusine Larivière, Hervé Watier e François Maillot. "Actualités des anticorps monoclonaux dans les maladies monogéniques aujourd’hui". médecine/sciences 35, n.º 12 (dezembro de 2019): 1026–28. http://dx.doi.org/10.1051/medsci/2019203.

Texto completo da fonte
Resumo:
Les maladies monogéniques sont des maladies génétiques rares mais très nombreuses, avec une sévérité variable. Les premières utilisations des anticorps monoclonaux dans ces maladies remontent aux années 2000 et de nombreux essais sont désormais en cours. Les anticorps monoclonaux anti-(interleukine)IL-1β ont profondément transformé la prise en charge des maladies auto-inflammatoires en modulant la composante inflammatoire et en diminuant le risque d’amylose secondaire ; les anticorps monoclonaux anti-TNF-α et anti-IL-6 sont également prescrits dans ces maladies. Dans le syndrome hémolytique et urémique atypique lié à des défauts de régulation de la voie alterne du complément, l’éculizumab, un anticorps monoclonal anti-C5, a permis d’améliorer le pronostic rénal des patients traités. Plus récemment, le lanadélumab, un anticorps monoclonal anti-kallicréïne plasmatique, est venu renforcer l’arsenal thérapeutique des angiœdèmes héréditaires et le burosumab, un anticorps monoclonal anti-FGF23, celui du rachitisme hypophosphatémique lié à l’X. Ces exemples illustrent bien l’importance de l’utilisation des anticorps monoclonaux dans la prise en charge des maladies monogéniques, l’intérêt de considérer cette option thérapeutique dans ce domaine et la nécessité de poursuivre des recherches.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Fujita, T., T. Kamato e N. Tamura. "Characterization of functional properties of C4-binding protein by monoclonal antibodies." Journal of Immunology 134, n.º 5 (1 de maio de 1985): 3320–24. http://dx.doi.org/10.4049/jimmunol.134.5.3320.

Texto completo da fonte
Resumo:
Abstract We prepared mouse monoclonal antibodies to human C4-binding protein (C4-bp) by fusing spleen cells from mice immunized with purified C4-bp to the mouse myeloma line P3U1. Of four monoclonal antibodies that reacted with intact C4-bp, two were specific for a 48K fragment, one of the chymotryptic cleavage products of C4-bp, and one was specific for another fragment (160K). The fourth monoclonal antibody did not react with either fragment. One of the monoclonals that reacted with the 48K fragment blocked the binding of C4-bp to cell-bound C4b. This monoclonal antibody (TK3) also inhibited two other functions of C4-bp, serving as an essential cofactor for C3b/C4b inactivator (I) in the cleavage of fluid-phase C4b and accelerating the decay of C2a from the C4b,2a complex. The other monoclonals had little or no effect on these activities of C4-bp. In addition, we found that the 48K fragment lost the binding affinity for C4b. However, it can function as a cofactor for I and as a decay-accelerator, although its activities were about 200 times weaker than intact C4-bp on a molar basis. The monoclonal antibody TK3 completely inhibited these activities of the 48K fragment. On the basis of these findings, we conclude that the functionally active site of C4-bp is located on the 48K fragment. Probably, the cofactor and decay-accelerating activities of C4-bp result from the binding of C4-bp to C4b.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Velez, D., J. D. Macmillan e L. Miller. "Production and use of monoclonal antibodies for identification of Bradyrhizobium japonicum strains". Canadian Journal of Microbiology 34, n.º 1 (1 de janeiro de 1988): 88–92. http://dx.doi.org/10.1139/m88-018.

Texto completo da fonte
Resumo:
Thirteen murine hybridomas capable of producing monoclonal antibodies to somatic antigens on Bradyrhizobium japonicum were developed and an indirect enzyme-linked immunosorbent assay was used to test reactivity of the antibodies against 20 strains of B. japonicum. Although polyclonal antisera from mice immunized with strains of B. japonicum reacted with bacterial cells of all 20 strains, individual monoclonals were more specific. Some antibodies reacted with as few as 2 and one with as many as 11 strains. On the basis of reactivity with the set of 13 monoclonal antibodies, the 20 strains of B. japonicum could be divided arbitrarily into five groups. Three of five monoclonal antibodies tested reacted with bacteroids taken directly from soybean nodules. One monoclonal bound to cells of five species of Rhizobium, but none of the 13 reacted with gram-negative bacteria representing six other genera. Treatment of cells with reagents and heat indicated the chemical nature of the antigens to five of the monoclonals. Antigen reactive with one antibody was destroyed by periodate oxidation indicating that it was a polysaccharide. Two antigens were probably proteins as they could be digested by trypsin and denatured by heat. Two others were inactivated by all three treatments suggesting they were glycoproteins.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Campbell, AM, P. Whitford e RE Leake. "Human monoclonal antibodies and monoclonal antibody multispecificity". British Journal of Cancer 56, n.º 6 (dezembro de 1987): 709–13. http://dx.doi.org/10.1038/bjc.1987.275.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Hanna, R. E. B., A. G. Trudgett e A. Anderson. "Fasciola hepatica: development of monoclonal antibodies against somatic antigens and their characterization by ultrastructural localization of antibody binding". Journal of Helminthology 62, n.º 1 (março de 1988): 15–28. http://dx.doi.org/10.1017/s0022149x00011147.

Texto completo da fonte
Resumo:
ABSTRACTA series of monoclonal antibodies was prepared against tegumental and internal antigens ofFasciola hepaticaby immunizing mice with whole adult-fluke homogenates prior to harvesting the splenic lymphocytes for fusion. Preliminary screening by the Indirect Fluorescent Antibody technique indicated the occurrence of discrete groups of monoclonals differing from one another in tissue-specificity but within which IFA labelling patterns were fairly consistent. Representative hybridomas for 5 of these groups were stabilized and used to produce ascites fluid in mice. By application of an immunogold labelling technique it was possible to map the distribution of antigens for which each monoclonal antibody had affinity throughout the tissues of 4-week and 12-week flukes. Several monoclonals specifically labelled antigenic determinants on the important tegumental antigen T1. However the distribution of gold colloid labelling suggested that epitopes other than that normally exposed to the infected host were recognized; and several monoclonals specifically attached to T1 antigen in the tegument of juvenile worms only. The glycocalyx of the gut and excretory system of flukes shared T1 antigenicity with the tegument. Monoclonal antibodies were produced against an internal immunogen associated with ribosomes and heterochromatin in active protein-producing cells, and against interstitial material of adult flukes. Monoclonals against antigens in parenchymal cell cytoplasm and in mature vitelline cells were recognized but the corresponding hybridomas were not stabilized.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Rieger, Paula Trahan. "Monoclonal Antibodies". American Journal of Nursing 87, n.º 4 (abril de 1987): 469. http://dx.doi.org/10.2307/3470440.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Kosmas, C., H. Kalofonos e A. A. Epenetos. "Monoclonal Antibodies". Drugs 38, n.º 5 (novembro de 1989): 645–57. http://dx.doi.org/10.2165/00003495-198938050-00001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

&NA;. "Monoclonal antibodies". Reactions Weekly &NA;, n.º 1293 (março de 2010): 36. http://dx.doi.org/10.2165/00128415-201012930-00100.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

&NA;. "Monoclonal Antibodies". Journal of Pediatric Hematology/Oncology 25, n.º 4 (abril de 2003): S5—S6. http://dx.doi.org/10.1097/00043426-200304000-00025.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

&NA;. "Monoclonal Antibodies". Journal of Pediatric Hematology/Oncology 25, n.º 4 (abril de 2003): S17—S18. http://dx.doi.org/10.1097/00043426-200304000-00036.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Anderson, Philip O. "Monoclonal Antibodies". Breastfeeding Medicine 11, n.º 3 (abril de 2016): 100–101. http://dx.doi.org/10.1089/bfm.2016.0026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Nowak, Thomas P. "Monoclonal Antibodies". American Journal of Clinical Oncology 10, n.º 4 (agosto de 1987): 278–80. http://dx.doi.org/10.1097/00000421-198708000-00002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Bourne, Debra. "Monoclonal future?" Companion Animal 22, n.º 10 (2 de outubro de 2017): 561. http://dx.doi.org/10.12968/coan.2017.22.10.561.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Ghobrial, Rafik M., Ronald W. Busuttil e Jerzy W. Kupiec-Weglinski. "Monoclonal antibodies". Current Opinion in Organ Transplantation 2, n.º 1 (outubro de 1997): 82–88. http://dx.doi.org/10.1097/00075200-199710000-00015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Rosen, Steven T., Elyse A. Lambiase, Yixing Ma, James A. Radosevich e Alan L. Epstein. "Monoclonal antibodies". Postgraduate Medicine 77, n.º 4 (março de 1985): 129–34. http://dx.doi.org/10.1080/00325481.1985.11698922.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Rabin, Brace S. "Monoclonal antibodies". Postgraduate Medicine 79, n.º 1 (janeiro de 1986): 293–303. http://dx.doi.org/10.1080/00325481.1986.11699254.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

La Pine, Timothy R., e Harry R. Hill. "Monoclonal antibodies". Seminars in Pediatric Infectious Diseases 12, n.º 1 (janeiro de 2001): 64–70. http://dx.doi.org/10.1053/spid.2001.19241.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Mulshine, James. "Monoclonal Antibodies". Chest 89, n.º 4 (abril de 1986): 355S. http://dx.doi.org/10.1378/chest.89.4_supplement.355s.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Kemshead, J. "Monoclonal evolution". Trends in Biotechnology 15, n.º 5 (maio de 1997): 195. http://dx.doi.org/10.1016/s0167-7799(97)82756-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Borek, F. "Monoclonal antibodies". Journal of Immunological Methods 77, n.º 1 (fevereiro de 1985): 175. http://dx.doi.org/10.1016/0022-1759(85)90197-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Howland, J. L. "Monoclonal antibodies". Biochemical Education 23, n.º 4 (outubro de 1995): 223. http://dx.doi.org/10.1016/0307-4412(95)90177-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Carter, Philip B., Kim Holly Beegle e Douglas H. Gebhard. "Monoclonal Antibodies". Veterinary Clinics of North America: Small Animal Practice 16, n.º 6 (novembro de 1986): 1171–79. http://dx.doi.org/10.1016/s0195-5616(86)50135-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Cowden, Jessica, e Sarah K. Parker. "Monoclonal Antibodies". Pediatric Infectious Disease Journal 25, n.º 6 (junho de 2006): 553–55. http://dx.doi.org/10.1097/01.inf.0000223443.80696.5b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Drakeman, Donald L., e Paul K. Wallace. "Monoclonal antibodies". Emerging Drugs 4, n.º 1 (janeiro de 1999): 355–65. http://dx.doi.org/10.1517/14728214.4.1.355.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Stephenson, J. "Monoclonal Milestone". JAMA: The Journal of the American Medical Association 285, n.º 10 (14 de março de 2001): 1283—b—1283. http://dx.doi.org/10.1001/jama.285.10.1283-b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Stephenson, Joan. "Monoclonal Milestone". JAMA 285, n.º 10 (14 de março de 2001): 1283. http://dx.doi.org/10.1001/jama.285.10.1283-jwm10002-3-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Geskin, Larisa J. "Monoclonal Antibodies". Dermatologic Clinics 33, n.º 4 (outubro de 2015): 777–86. http://dx.doi.org/10.1016/j.det.2015.05.015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Buchsbaum, Donald J. "Monoclonal antibodies". International Journal of Radiation Oncology*Biology*Physics 17 (janeiro de 1989): 84–85. http://dx.doi.org/10.1016/0360-3016(89)90573-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Melamed, M. D., e C. E. Bradley. "Monoclonal antibodies". Current Opinion in Immunology 1, n.º 5 (junho de 1989): 929–36. http://dx.doi.org/10.1016/0952-7915(89)90075-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Koch, C., e J. Bennedsen. "Monoclonal antibodies". Current Opinion in Immunology 2, n.º 3 (fevereiro de 1990): 385–91. http://dx.doi.org/10.1016/0952-7915(89)90146-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Chatenoud, L. "Monoclonal antibodies". Current Opinion in Immunology 2, n.º 2 (janeiro de 1989): 246–48. http://dx.doi.org/10.1016/0952-7915(89)90195-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Buchsbaum, Donald J. "Monoclonal antibodies". International Journal of Radiation Oncology*Biology*Physics 19 (janeiro de 1990): 92. http://dx.doi.org/10.1016/0360-3016(90)90591-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Buchsbaum, Donald J. "Monoclonal antibodies". International Journal of Radiation Oncology*Biology*Physics 21 (janeiro de 1991): 82. http://dx.doi.org/10.1016/0360-3016(91)90373-c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Lubkin, Margaret, Matthew Shallice, Julie Nyhus, Louis Leong e Birte Aggeler. "Recombinant Rabbit Monoclonal Antibodies to Study Apoptosis and Apoptotic Pathways (132.4)". Journal of Immunology 184, n.º 1_Supplement (1 de abril de 2010): 132.4. http://dx.doi.org/10.4049/jimmunol.184.supp.132.4.

Texto completo da fonte
Resumo:
Abstract Flow cytometry a tool for studying apoptosis and apoptotic pathways. Using monoclonal antibodies for flow cytometry leads to high specificity for the detection of the target epitope of interest, limiting the use of flow cytometry to available mouse monoclonal antibodies. Here we present high quality recombinant rabbit monoclonal antibodies that do not rely on hybridoma cell lines, but are made with a proprietary recombinant technology to obtain cloned antibodies. These rabbit monoclonals were compared to other available antibodies to demonstrate high specificity and affinity to their targets. We examined lot-to-lot consistency using the same antibody for flow cytometry, western blot and immunocytochemistry. In this study two rabbit monoclonal antibodies involved in apoptotic pathways, Cleaved Caspase-3[Asp175] and p53[pS15] were examined. The p53 antibody is the phosphorylated form of p53 [pS15], which in turn induces p53 Upregulated Modulator of Apoptosis (PUMA), the result being apoptosis through mitochondrial degradation. We performed western blot, and immunocytochemistry studies to show high specificity for both antibodies as well as obtain spatial resolution within the cell.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Sellwood, Jane, e Lynn Smith. "Rapid Detection of Poliovirus from Waters Using Monoclonal Antibodies". Water Science and Technology 21, n.º 3 (1 de março de 1989): 299–301. http://dx.doi.org/10.2166/wst.1989.0123.

Texto completo da fonte
Resumo:
Poliovirus is present in many types of water in the environment. A rapid detection method for the presence of Poliovirus could be relevant to water management. Virus components are present in cell culture from 6-18 hours after infection. The indirect immunofluorescent staining technique can be used to detect the components. Monoclonal antibodies may provide specific and sensitive reagents for this test. Two of over 50 mouse monoclonal antibodies screened were able to recognise and attach to Poliovirus 3 infected cells. The time at which fluorescence was detected was dependent on the initial virus concentration. These two monoclonals recognise ‘early' produced structural protein before its configuration into a mature capsid.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Gyotoku, Y., M. Abdelmoula, F. Spertini, S. Izui e P. H. Lambert. "Cryoglobulinemia induced by monoclonal immunoglobulin G rheumatoid factors derived from autoimmune MRL/MpJ-lpr/lpr mice." Journal of Immunology 138, n.º 11 (1 de junho de 1987): 3785–92. http://dx.doi.org/10.4049/jimmunol.138.11.3785.

Texto completo da fonte
Resumo:
Abstract A MRL strain bearing the autosomal recessive mutant gene, lpr (lymphoproliferation), spontaneously develops, in addition to a lupus-like syndrome, unique serological and pathological manifestations. Production of high titers of IgG rheumatoid factors (RF) may be related to the formation of extremely large amounts of cryoglobulins and the development of tissue lesions such as necrotizing polyarteritis, arthritis, and glomerulonephritis. To analyze more directly the relationship of IgG RF to the development of cryoglobulins and tissue injuries, we have established four monoclonal IgG RF secreting hybridomas from unimmunized MRL-lpr/lpr mice and determined their pathogenic effects in normal strains of mice. All the monoclonal IgG RF obtained in this study were of the IgG3 subclass and generated cryoglobulins. However, the fact that not only IgG3 Rf monoclonals but also four of five non-RF IgG3 monoclonals were able to form cryoglobulins, which were composed exclusively of each IgG3 monoclonal, indicates that the IgG3 molecule has a unique physicochemical property to self-associate via nonimmunological interaction and the ability to form cryoglobulins. When the in vivo pathogenic activities of these IgG3 RF and non-RF monoclonals were examined, three of IgG3 RF monoclonals with the specificity to IgG2a were able to induce extensive pathologic manifestations including peripheral vasculitis and glomerulonephritis characteristic of patients with cryoglobulinemia. Our results indicate that the IgG3 itself, independently of its specificity, could be a potential source of cryoglobulins and IgG3 RF, combined with its activity of cryoglobulin formation, may play a significant role in the development of glomerulonephritis and cutaneous vascular lesions of ears and foot pads observed frequently in aged MRL-lpr/lpr mice.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Tam, Christina, Luisa Cheng, Xiaohua He, Paul Merrill, David Hodge e Larry Stanker. "A Monoclonal–Monoclonal Antibody Based Capture ELISA for Abrin". Toxins 9, n.º 10 (18 de outubro de 2017): 328. http://dx.doi.org/10.3390/toxins9100328.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Zonneveld, Anton-Jan van, Harry Veerman, Just P. J. Brakenhoff, Lucien A. Aarden, Jean-Francois Cajot e Hans Pannekoek. "Mapping of Epitopes on Human Tissue-Type Plasminogen Activator with Recombinant Deletion Mutant Proteins". Thrombosis and Haemostasis 57, n.º 01 (1987): 082–86. http://dx.doi.org/10.1055/s-0038-1651067.

Texto completo da fonte
Resumo:
SummaryAn antigen assay based on a monoclonal antibody directed against the light chain of tissue-type plasminogen activator (t-PA) was developed to quantify seven recombinant (r) t-PA deletion mutant proteins. These recombinant proteins were then employed to map different epitopes on t-PA which interact with a panel of twenty-three monoclonal anti-t-PA antibodies. Twenty were directed against domains on the heavy chain, two against the “finger” domain, three against the “epidermal growth factor-like” domain, five against the kringle 1 domain, and ten against the kringle 2 domain. Only three monoclonal anti-t-PA antibodies interact with the light chain. The finding that the epitopes of each of the monoclonals could be determined with the deletion mutant proteins supports the hypothesis of autonomous folding of structural domains and emphasizes the validity of the use of the recombinant t-PA-deletion mutant proteins for structure-function studies.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Streicher, H. Z., F. Cuttitta, G. K. Buckenmeyer, H. Kawamura, J. Minna e J. A. Berzofsky. "Mapping the idiotopes of a monoclonal anti-myoglobin antibody with syngeneic monoclonal anti-idiotypic antibodies: detection of a common idiotope." Journal of Immunology 136, n.º 3 (1 de fevereiro de 1986): 1007–14. http://dx.doi.org/10.4049/jimmunol.136.3.1007.

Texto completo da fonte
Resumo:
Abstract A panel of syngeneic monoclonal anti-idiotypic antibodies was prepared by immunizing A.SW mice with keyhole limpet hemocyanin-coupled A.SW monoclonal anti-myoglobin (HAL 19, IgG1) and screening the cloned hybridomas for production of IgG2 binding to idiotype but not to certain other anti-myoglobin antibodies of the same subclass in an ELISA. With these antibodies, we identified three nonoverlapping idiotopes, based on three clusters of monoclonal anti-idiotopes that mutually inhibit within each cluster, but not between clusters (Cluster I: S2, S6, S8; Cluster II: S5, S7; Cluster III: S9). Only Cluster II antibodies block the binding of myoglobin to HAL 19 and so identify a binding site-related idiotope(s). Binding of both Cluster II monoclonals (S5 and S7) to Hal 19 is inhibited by a rabbit anti-idiotype that we previously reported detects a common cross-reactive anti-myoglobin idiotope in immune sera. However, only one of these, S7, and not S5, identifies an idiotope that is present on 20 to 30% of A.SW anti-myoglobin antibodies in immune sera and ascites. The panel of syngeneic monoclonal anti-idiotype antibodies also detects new idiotopes not detected by the rabbit anti-idiotype. The development of a panel of syngeneic monoclonal anti-idiotypic antibodies to different clusters of idiotopes on the same antibody molecule, including one that identifies a major common idiotope in immune sera, should allow the analysis of possible idiotype network regulation in vivo and in vitro in a completely syngeneic system.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Henry, Richard, John Begent e Rosamund Barbara Pedley. "Monoclonal Antibody Administration". Clinical Pharmacokinetics 23, n.º 2 (agosto de 1992): 85–89. http://dx.doi.org/10.2165/00003088-199223020-00001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

&NA;. "Monoclonal antibody OKTcdr4a". Inpharma Weekly &NA;, n.º 1129 (março de 1998): 8. http://dx.doi.org/10.2165/00128413-199811290-00015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

&NA;. "Antineoplastics/monoclonal antibodies". Reactions Weekly &NA;, n.º 1227 (novembro de 2008): 5–6. http://dx.doi.org/10.2165/00128415-200812270-00016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Greenfield, Edward A. "Generating Monoclonal Antibodies". Cold Spring Harbor Protocols 2022, n.º 8 (agosto de 2022): pdb.top103036. http://dx.doi.org/10.1101/pdb.top103036.

Texto completo da fonte
Resumo:
Antibodies that are produced by hybridomas are known as monoclonal antibodies. Here we introduce methods for generating and screening monoclonal antibodies, including developing the screening procedure and producing hybridomas.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Susla, Gregory M., e Richard B. Dew. "Antiendotoxin Monoclonal Antibodies". Drug Safety 11, n.º 4 (outubro de 1994): 215–22. http://dx.doi.org/10.2165/00002018-199411040-00001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

O'Mahony, Deirdre. "Monoclonal antibody therapy". Frontiers in Bioscience 11, n.º 1 (2006): 1620. http://dx.doi.org/10.2741/1909.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Tami, Joseph A., Michael D. Parr, Stephen A. Brown e John S. Thompson. "Monoclonal antibody technology". American Journal of Health-System Pharmacy 43, n.º 11 (1 de novembro de 1986): 2816–25. http://dx.doi.org/10.1093/ajhp/43.11.2816.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

"Monoclonal Antibody TfR Monoclonal Antibody". Monoclonal Antibodies in Immunodiagnosis and Immunotherapy 36, n.º 1 (fevereiro de 2017): 35. http://dx.doi.org/10.1089/mab.2017.0004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Xu, Xiaobin. "C-termini Analysis of Monoclonal Antibody Fragmentation". Open Access Journal of Pharmaceutical Research 1, n.º 1 (2017). http://dx.doi.org/10.23880/oajpr-16000102.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Howland Alvarez, Ivon, Yolanda Cruz Gómez e Jorge Grisaldo Zambrano. "Daño renal asociado con componentes monoclonales débiles en pacientes cubanos con gammapatía monoclonal". Revista Mexicana de Urología 78, n.º 4 (30 de agosto de 2018). http://dx.doi.org/10.48193/rmu.v78i4.86.

Texto completo da fonte
Resumo:
OBJETIVO: Analizar la relación entre las bandas monoclonales detectadas en la electroforesis de proteínas séricas y el daño renal. MATERIALES Y MÉTODOS: Estudio observacional, descriptivo y retrospectivo efectuado a partir de la revisión de los resultados de electroforesis de proteínas efectuado en el Laboratorio de Diagnóstico Clínico del Centro de Investigaciones Médico-Quirúrgicas de La Habana, Cuba, entre enero de 2010 y diciembre de 2016. Criterios de inclusión: pacientes con componente monoclonal detectado en la electroforesis y confirmado por inmunofijación, y pacientes sin componente monoclonal en la electroforesis de proteínas, pero detectado en la inmunofijación realizada por impresión diagnóstica de mieloma múltiple. Los estudios de electroforesis de proteínas en suero y orina de 24 horas se efectuaron en gel de agarosa, con el sistema automatizado Hydrasys 2 (Sebia®). Para el análisis estadístico se utilizaron las pruebas de Kolmogorov-Smirnov, χ2 y t de Student. Se consideró estadísticamente significativo el IC95% (α = 0.05). RESULTADOS: Se registraron 73 pacientes con gammapatías monoclonales. En 17 se reportaron concentraciones de inmunoglobulinas en los límites de referencia. La mayoría de los pacientes tuvo concentración elevada de creatinina en suero (129 ± 46 μmol/L), aunque solo 7/73 tenía diagnóstico de insuficiencia renal asociada con el componente monoclonal. La concentración de inmunoglobulinas (IgG, IgA e IgM), según sus valores de referencia, se relacionó con el tipo de componente monoclonal detectado. Se encontró un caso de mieloma IgD, con inicio de insuficiencia renal y estudio de electroforesis de proteínas séricas normal. CONCLUSIONES: La inmunofijación sigue siendo un método útil para establecer el diagnóstico de gammapatías monoclonales, sobre todo cuando la electroforesis de proteínas no sugiera esta alteración y pueda verse afectada la función renal. PALABRAS CLAVE: Gammapatía monoclonal; electroforesis de proteínas; inmunofijación; insuficiencia renal.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia