Siga este link para ver outros tipos de publicações sobre o tema: Molybdenum compounds.

Artigos de revistas sobre o tema "Molybdenum compounds"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Molybdenum compounds".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Osipov, P. A., R. A. Shayakhmetova e A. B. Sagyndykov. "Preparation, purification and dissolution of molybdenum oxychloride compounds in water". Engineering Journal of Satbayev University 144, n.º 6 (2022): 18–23. http://dx.doi.org/10.51301/ejsu.2022.i6.03.

Texto completo da fonte
Resumo:
Expansion of the fields of application of molybdenum and its compounds of high purity requires the study of their various purification methods. The paper considers low-temperature chlorination of technical molybdenum dioxide, purification of the gas mixture from impurities in the filter system, condensation and dissolution of purified molybdenum oxychloride compounds in water. On filters made of tableted sodium chloride, gaseous molybdenum dioxide is purified from aluminum, iron, chromium and nickel with the formation of low-volatile compounds. The capture of silicon by this filter was not detected. Purification of tungsten on filters of granular molybdenum oxide practically does not occur. Purified molybdenum oxychloride compounds are desublimated in the form of compact and fluffy products with an underestimated chlorine content relative to the stoichiometric composition of molybdenum dioxide. Compact molybdenum oxychloride compounds dissolve in distilled water with little or no precipitation. When dissolving fluffy compounds of molybdenum, a tangible precipitate is formed, into which a significant part of the impurities passes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Roggan, Stefan, e Christian Limberg. "Molecular molybdenum/bismuth compounds". Inorganica Chimica Acta 359, n.º 15 (dezembro de 2006): 4698–722. http://dx.doi.org/10.1016/j.ica.2006.04.030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Osipov, P. A., R. A. Shayakhmetova, A. B. Sagyndykov, G. K. Maldybaev e Zh А. Alybaev. "PREPARATION, PURIFICATION AND DISSOLUTION OF MOLYBDENUM OXYCHLORIDE COMPOUNDS IN WATER". Vestnik of the Kyrgyz-Russian Slavic University 22, n.º 12 (2022): 72–79. http://dx.doi.org/10.36979/1694-500x-2022-22-12-72-79.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Borukaev, Timur A., A. Kh Shaov, I. A. Shogenova, M. A. Pshitsukova e M. S. Pshikhacheva. "Thermostability and Mechanical Properties of PVC-Plastic/Molybdenum Compounds". Materials Science Forum 935 (outubro de 2018): 140–43. http://dx.doi.org/10.4028/www.scientific.net/msf.935.140.

Texto completo da fonte
Resumo:
Composites based on PVC-plastic and molybdenum compounds were obtained. Thermostability and mechanical properties of the obtained compounds were studied. High thermal stability of the obtained PVC compounds was found. It is shown that molybdenum compounds effectively bind hydrogen chloride and catalyze structural changes in macromolecules. At the same time, the introduction of molybdenum compounds in PVC-plastic does not lead to deterioration in the mechanical properties of the material.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Klienkov, Alexey V., Lyubov A. Petukhova e Alexander A. Petukhov. "The study of molybdenum-containing solutions by IR spectroscopy". Butlerov Communications 61, n.º 2 (29 de fevereiro de 2020): 103–7. http://dx.doi.org/10.37952/roi-jbc-01/20-61-2-103.

Texto completo da fonte
Resumo:
Molybdenum compounds are widely used as catalysts for various chemical reactions, such as: oxidation, epoxidation, hydrogenation, reduction, etc. In particular, molybdenum compounds are used as a catalyst in the epoxidation of propylene with ethylbenzene hydroperoxide during the joint production of styrene and propylene oxide introduced into the industry as part of PJSC "Nizhnekamskneftekhim". We are working to verify the possibility of using glycol solutions, oxygen-containing inorganic compounds of molybdenum, such as molybdenum acid (MK), molybdenum anhydride (MA) and ammonium paramolybdate (PMA) as an epoxidation reaction catalyst. In the initial molybdenum compounds used to prepare the catalyst solutions, molybdenum is in the hexavalent state. The temperature treatment of these compounds in coordinating solvents, glycols, leads to their partial depolymerization and reduction to Mo(VI). Moreover, the more coordinating the solvent, the deeper these processes are flowed. There are reports in the literature on the study of various molybdenum compounds in aqueous media and crystalline state by IR spectroscopy and Raman scattering. It was found that the dissolution of MA, MK, and PMA in monoethylene glycol (MEG) is associated with the formation in the solution of compounds Mo(V), Mo(VI) of various molecular composition in the form of monomers, dimers, tetramers, and also in the form of the main components of hept- and octamers and higher molecular weight compounds. As the temperature rises, initially larger monomers of the octa- and hepta-form type transform into monomers of lower aggregation. All established patterns are analyzed by the example of PMA solutions in MEG.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Jurowska, Anna, Kamil Jurowski, Janusz Szklarzewicz, Boguslaw Buszewski, Tatiana Kalenik e Wojciech Piekoszewski. "Molybdenum Metallopharmaceuticals Candidate Compounds - The “Renaissance” of Molybdenum Metallodrugs?" Current Medicinal Chemistry 23, n.º 29 (17 de outubro de 2016): 3322–42. http://dx.doi.org/10.2174/0929867323666160504103743.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Khusnutdinov, R. I., T. M. Oshnyakova e U. M. Dzhemilev. "Molybdenum compounds in organic synthesis". Russian Chemical Reviews 86, n.º 2 (28 de fevereiro de 2017): 128–63. http://dx.doi.org/10.1070/rcr4617.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Odularu, Ayodele T., Peter A. Ajibade e Johannes Z. Mbese. "Impact of Molybdenum Compounds as Anticancer Agents". Bioinorganic Chemistry and Applications 2019 (10 de setembro de 2019): 1–9. http://dx.doi.org/10.1155/2019/6416198.

Texto completo da fonte
Resumo:
The aim of this mini review was to report the molybdenum compound intervention to control cancer disease. The intervention explains its roles and progress from inorganic molybdenum compounds via organomolybdenum complexes to its nanoparticles to control oesophageal cancer and breast cancer as case studies. Main contributions of molybdenum compounds as anticancer agents could be observed in their nanofibrous support with suitable physicochemical properties, combination therapy, and biosensors (biomarkers). Recent areas in anticancer drug design, which entail the uses of selected targets, were also surveyed and proposed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Liu, Shuxia, Yanyong Liu, Jie Liu, Baitao Li e Enbo Wang. "Antitumor Activity of Molybdenum Heteropoly Compounds". Chinese Journal of Applied Chemistry 13, n.º 2 (1 de abril de 1996): 104–6. http://dx.doi.org/10.3724/j.issn.1000-0518.1996.2.104106.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Klienkov, Alexey V., e Alexander A. Petukhov. "Obtaining molybdenyl glycolate using ethanol as a salting out solvent". Butlerov Communications 59, n.º 9 (30 de setembro de 2019): 66–70. http://dx.doi.org/10.37952/roi-jbc-01/19-59-9-66.

Texto completo da fonte
Resumo:
The global production of propylene oxide is more than 8 million tons/year and is increasing by more than 5% annually. Almost all domestic propylene oxide (72 thousand tons/year) is produced at PJSC Nizhnekamskneftekhim (Russia) according to one of the variants of the Halcon process – epoxidation of propylene with ethylbenzene hydroperoxide (HPEB) in the presence of a molybdenum catalyst. One of the most important tasks arising in improving the process for the joint production of styrene and propylene oxide at PJSC Nizhnekamskneftekhim (Russia) is the search and development of new catalysts and catalytic systems, one of the stages of this process – the epoxidation of propylene with HPEB. The complex molybdenum catalyst used in the production of propylene oxide, having high activity and selectivity, has several disadvantages, namely: low dissolved molybdenum content, high consumption of ethylbenzene hydroperoxide for its production, and instability during storage. Thus, the problem of obtaining a catalyst with a higher content of dissolved molybdenum and increasing the stability of the catalytic complex, i.e. development of new catalytic systems with the best technological and technical and economic indicators. An analysis of the scientific and technical literature and patent publications showed that in the synthesis of a complex molybdenum catalyst, various molybdenum compounds of both organic and inorganic nature can be used. During the study, molybdenum-containing solutions based on ammonium paramolybdate and monoethylene glycol were tested, distillation distillation products prepared by distilling off excess monoethylene glycol by strengthening under vacuum. Molybdenyl glycolate was isolated by salting out with ethanol from a distillation bottoms product.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Stoffelbach, François, Dirk Saurenz e Rinaldo Poli. "Improved Preparations of Molybdenum Coordination Compounds from Tetrachlorobis(diethyl ether)molybdenum(IV)". European Journal of Inorganic Chemistry 2001, n.º 10 (setembro de 2001): 2699–703. http://dx.doi.org/10.1002/1099-0682(200109)2001:10<2699::aid-ejic2699>3.0.co;2-s.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

SOTANI, N., K. EDA e M. KUNITOMO. "ChemInform Abstract: Hydrogen Insertion Compounds of Molybdenum Trioxide (Hydrogen Molybdenum Bronze, HxMoO3)". ChemInform 25, n.º 6 (19 de agosto de 2010): no. http://dx.doi.org/10.1002/chin.199406265.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Sowjanya, P., B. Vasundhara e D. Kishore Babu. "Determination of L X-ray satellite lines for Molybdenum (Mo) and Molybdenum trioxide (MoO3) by wavelength dispersion X-ray fluorescence WD-XRF". Journal of Physics: Conference Series 2426, n.º 1 (1 de fevereiro de 2023): 012055. http://dx.doi.org/10.1088/1742-6596/2426/1/012055.

Texto completo da fonte
Resumo:
Abstract X-Ray fluorescence (XRF) is an effective method for chemical profile analysis of various materials. In earlier times, it is only confined to qualitative and quantitative analysis. This wavelength dispersive X Ray fluorescence (WDXRF) will be used to check the nuclear design of different Molybdenum compounds. The study of relative intensity ratios of various satellite peaks of Molybdenum (Mo) and Molybdenum trioxide (MoO3) compounds is associated with their atomic spectral structures. The intensity ratios will give the validity of the Hatree-slater model of different combinations. In this paper, we will present energy versus intensity and data obtained using WDXRF for the compounds Mo and MoO3. From this data, it will be seen that the Lβ line is resolved. From this we conclude that Coaster-Kronig transitions by double vacancy states of L3N4 and L3N5.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Azizkulova, Onajon Azizkulovna, Aziz Sharifovich Egamberdiev e Ubaidullo Mahmadsafievich Jurabekov. "DIFFERENT COORDINATION COMPOUNDS MOLYBDENUM WITH 8-HYDROXYQUINOLINE". Вестник Таджикского национального университета. Серия естественных наук, n.º 1 (2020): 167–82. http://dx.doi.org/10.51884/2413-452x_2020_1_167.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Barradas, E. F. M., A. R. Cestari, C. Airoldi e R. Buffon. "Epoxidation of Cyclohexene on Heterogenized Molybdenum Compounds". Brazilian Journal of Chemical Engineering 15, n.º 2 (junho de 1998): 146–50. http://dx.doi.org/10.1590/s0104-66321998000200008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Azizkulova, Onajon Azizkulovna, Aziz Sharifovich Egamberdiev e Ubaidullo Mahmadsafievich Jurabekov. "DIFFERENT COORDINATION COMPOUNDS MOLYBDENUM WITH 8-HYDROXYQUINOLINE". Вестник Таджикского национального университета. Серия естественных наук, n.º 1 (2020): 167–82. http://dx.doi.org/10.51884/2413-452x_2020_4_103.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Baran, M., V. Shamrai e H. Szymczak. "Magnetic resonance in molybdenum spinel-like compounds". Journal de Physique 46, n.º 2 (1985): 189–92. http://dx.doi.org/10.1051/jphys:01985004602018900.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Holrnes, Michael, e Shawn C. Sendlinger. "Improved Syntiietic Routes to Molybdenum-Nitrido Compounds". Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 29, n.º 1 (1 de janeiro de 1999): 143–53. http://dx.doi.org/10.1080/00945719909349440.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Brill, W. J., S. W. Ela e J. A. Breznak. "Termite killing by molybdenum and tungsten compounds". Naturwissenschaften 74, n.º 10 (outubro de 1987): 494–95. http://dx.doi.org/10.1007/bf00447933.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

HABER, J. "ChemInform Abstract: Molybdenum Compounds in Heterogeneous Catalysis". ChemInform 26, n.º 34 (17 de agosto de 2010): no. http://dx.doi.org/10.1002/chin.199534277.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Gabel, J., W. Vonau e U. Guth. "Molybdenum and Tungsten Compounds in Sensor Technology". Zeitschrift für anorganische und allgemeine Chemie 628, n.º 9-10 (setembro de 2002): 2230. http://dx.doi.org/10.1002/1521-3749(200209)628:9/10<2230::aid-zaac2230>3.0.co;2-m.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Li, Mei Mei, Nai Jun Li e Hong Ren Li. "Studied on Principle and Method for Determination of Molybdenum in Steel Materials by FAAS with Laurtrimonium Chloride". Advanced Materials Research 600 (novembro de 2012): 128–32. http://dx.doi.org/10.4028/www.scientific.net/amr.600.128.

Texto completo da fonte
Resumo:
A rapid and highly sensitive method for determination of traces of molybdenum in steel material by FAAS with laurtrimonium chloride was described. The droplet is smaller, the number of molybdenum in droplets is enriched and the micelle compounds are formatted with the existence of laurtrimonium chloride. As the result, the sensitivity of determination of molybdenum is enhanced for 46%, the linear range obeys in range of 0~40μg mL-1 for molybdenum and the interference caused by coexistent metal ions is eliminated.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Adamski, Paweł, Marlena Nadziejko, Agata Komorowska, Adam Sarnecki, Aleksander Albrecht e Dariusz Moszyński. "Chromium-modified cobalt molybdenum nitrides as catalysts for ammonia synthesis". Open Chemistry 17, n.º 1 (29 de março de 2019): 127–31. http://dx.doi.org/10.1515/chem-2019-0017.

Texto completo da fonte
Resumo:
AbstractThe influence of chromium compounds on the properties of cobalt molybdenum nitrides was studied. CoMoO4 obtained by precipitation from cobalt and molybdenum salts was modified by the addition of chromium(III) nitrate. A mixture of cobalt-molybdenum nitrides, Co2Mo3N and Co3Mo3N, was formed by ammonolysis of modified CoMoO4. The concentration of Co2Mo3N decreases with increasing chromium content. The specific surface area of cobalt molybdenum nitrides consisting of 2 wt% of Cr atoms increased by 50% in comparison to pure cobalt molybdenum nitrides. The catalytic activity of obtained catalysts in ammonia synthesis process decreases with rising of chromium concentration.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Kone, M., P. Courtin e J. Lemerle. "Enhanced polymerization of molybdate ions in the presence of antimonic acid". Canadian Journal of Chemistry 68, n.º 1 (1 de janeiro de 1990): 36–40. http://dx.doi.org/10.1139/v90-009.

Texto completo da fonte
Resumo:
Polymer compounds including both antimony and molybdenum were formed by mixing freshly prepared solutions of antimonic and molybdic acid. These acids were formed through an ion exchange process. When antimony is in excess, molybdenum is included in the high polymers having the ccp structure of β antimonic acid. When molybdic acid is in excess in the starting mixture, molybdenum-rich polymers with a larger molecular weight than molybdic acid were formed. In GPC experiments the behaviour of the compounds is related to their Mo and Sb content. The elution volume is only related to the molecular weight of the compound when Sb is the main component and imposes its structure. Keywords: molybdoantimonic acids, inorganic polymers, ultracentrifugation, GPC.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Burgmayer, Sharon. "Making Moco: A Personal History". Molecules 28, n.º 21 (27 de outubro de 2023): 7296. http://dx.doi.org/10.3390/molecules28217296.

Texto completo da fonte
Resumo:
This contribution describes the path of my nearly forty-year quest to understand the special ligand coordinated to molybdenum and tungsten ions in their respective enzymes. Through this quest, I aimed to discover why nature did not simply use a methyl group on the dithiolene that chelates Mo and W but instead chose a complicated pyranopterin. My journey sought answers through the synthesis of model Mo compounds that allowed systematic investigations of the interactions between molybdenum and pterin and molybdenum and pterin-dithiolene and revealed special features of the pyranopterin dithiolene chelate bound to molybdenum.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Alien, J. D., e J. M. Gawthorne. "Involvement of organic molybdenum compounds in the interaction between copper, molybdenum, and sulfur". Journal of Inorganic Biochemistry 27, n.º 2 (junho de 1986): 95–112. http://dx.doi.org/10.1016/0162-0134(86)80011-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Bamberger, C. E., C. S. MacDougall e O. B. Cavin. "Formation of molybdenum carbides by reaction of molybdenum compounds with molten sodium cyanide". Reactivity of Solids 6, n.º 4 (fevereiro de 1989): 369–72. http://dx.doi.org/10.1016/0168-7336(89)80075-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Abrashov, Aleksey, Nelya Grigoryan, Tigran Vagramyan e Naum Asnis. "On the Mechanism of Formation of Conversion Titanium-Containing Coatings". Coatings 10, n.º 4 (29 de março de 2020): 328. http://dx.doi.org/10.3390/coatings10040328.

Texto completo da fonte
Resumo:
The present work is devoted to the study of the mechanism of the process of formation of adhesive oxide-titanium coatings on steel, zinc, and aluminum surfaces. For the first time, the following hypothesis has been confirmed experimentally, namely, that nickel, being the first metal to be deposited on a steel substrate, creates active centers on which titanium oxides are formed, because the hydrolysis of hexafluorotitanic acid is adsorbed, which then form a continuous film. The data obtained, regarding the dependence of the coating thickness on the linear rate of the solution flow along the treated surface, indirectly confirm that the formation of insoluble titanium oxides occurs because of the alkalization of the solution adjacent to the surface. It has been established that in the presence of hexavalent molybdenum compounds in the solution as oxidizers, molybdenum is included in the coating in the form of oxides. It has been revealed that in the lower layers of the coating, molybdenum is contained in the form of compounds of molybdenum (V) and (VI), while in the upper layers, it is contained only in the form of the compound of molybdenum (VI).
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Ramlau, R., R. E. McCarley e A. Simon. "The Structure of Twin Boundaries in Cluster Compounds: Potassium Barium Oxomolybdate". Microscopy and Microanalysis 3, S2 (agosto de 1997): 639–40. http://dx.doi.org/10.1017/s1431927600010084.

Texto completo da fonte
Resumo:
K0.19Ba3.18Mo22O34is a representative of the quaternary reduced molybdenum oxides in the series Mn±δMo4n+2O6n+4. These compounds contain condensed clusters Mo4n+2O8n+10 with a core of n trans edge-sharing molybdenum octahedra. The general concept of cluster condensation is discussed elsewhere. In the case of n being finite the clusters are designated as ‘oligomeric’. The individual clusters are interconnected via common oxygen atoms and arranged in layers. For the title compound with n = 5, the clusters consist of 5 molybdenum octahedra and are accompanied by 4 counter-cations (potassium and barium).The real structure of K0.19Ba3.81Mo22O34 has been recently studied with a Philips CM30/ST (Cs = 1.15 mm) by HREM, SAED, and EDXS. Besides chemical intergrowth of oligomeric clusters with n = 2—18 in the matrix consisting of pentameric clusters, polytypism was observed. Three ordered polytypes (modifications) were found, whereas only one of them, lM (Ramsdell notation), was detected and analyzed with x-ray methods.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Malyshev, Victor, Angelina Gab, Arvydas Survila, Cristina Donath, Elena Ionela Neacsu, Ana Maria Popescu e Virgil Constantin. "Electroplating of Co-W and Co-Mo Alloys from Na2WO4 Ionic Melts". Revista de Chimie 70, n.º 3 (15 de abril de 2019): 871–74. http://dx.doi.org/10.37358/rc.19.3.7023.

Texto completo da fonte
Resumo:
The cathodic reduction processes of cobalt (II), tungsten (VI) and molybdenum (VI) in Na2WO4 melts are discussed. Electrochemical behavior of cobalt in a tungstate melt, as well as the effect of electrolysis conditions on the composition and structure of Co-W and Co-Mo alloys deposits from tungstate-molybdate melts is also studied. With a decrease in the concentration of cobalt ions and an increase in the concentration of molybdenum (tungsten) ions in the melt, the phase composition of cathodic deposits is shown to change from individual cobalt to individual molybdenum (tungsten) via a series of cobalt-molybdenum (tungsten) compounds of various compositions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Stojkovski, S., RJ Magee e J. Liesegang. "Molybdenum Binding by Pseudomonas aeruginosa". Australian Journal of Chemistry 39, n.º 8 (1986): 1205. http://dx.doi.org/10.1071/ch9861205.

Texto completo da fonte
Resumo:
The uptake of molybdenum by certain bacteria hinders its role as a trace metal in the micronutrients for plant growth. The binding of molybdenum by the Gram-negative bacterium Pseudomonas aeruginosa, PAO1, has been investigated. A molybdenum complex of uronic acid, which forms in the extracellular polysaccharide layer (slime), was isolated and characterized by a variety of techniques. Comparisons with 'mimic' compounds of uronic acids suggest that Pseudomonas aeruginosa, PAO1, produces a binuclear, di-oxo-bridged magnesium salt MgMo2O4(C6H8O7)2.5H2O; this indicates the important role of uronic acids in metallic uptake by bacteria.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Katiyar, Shikha, Devendra Pratap Rao, Narendra Kumar Verma, Amit Kumar Gautam, Ashish Verma, Chandra Prakash Singh, Vijay Shankar e Yashveer Gautam. "Dioxomolybdenum (VI) Compounds of Macrocyclic Schiff base Ligands: Preparation, Characterization and Antibacterial Activity". Oriental Journal Of Chemistry 40, n.º 1 (25 de maio de 2024): 28–39. http://dx.doi.org/10.13005/ojc/400104.

Texto completo da fonte
Resumo:
Using di-2-furanylethanedione and 5-bromo-3-methylbenzene-1,2-diamine we prepared a monomeric [MoO2(SL)] with a Schiff base, as well as 4 different compounds using the formulation [MoO2(MSL). We investigate how [MoO2(SL)] reacts with 1,3-diketones. Several characterizations are discussed in this article, including molar conductance measurement, elemental analysis, UV-Vis, IR, NMR, and thermal measurements. Molybdenum has a six-coordination number. All five MoO2(VI) compounds have distorted octahedral arrangements. Molybdenum octahedra have four N-atoms and two oxidized O-atoms. Against S. aureus and S. typhi, all synthesized compounds showed moderate activity. The chelation hypothesis is used to define the progression of the antibacterial task.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Abu, M. B., A. А. Imamussenova, L. K. Kudreyeva, N. Zh Zhumasheva, A. M. Sarsenbayeva e K. M. Kedelbayeva. "APPLICATION OF MOLYBDENUM-BASED BIOSENSORS IN THE DIAGNOSIS OF DISEASES". Farmaciâ Kazahstana, n.º 2 (3 de maio de 2023): 64–71. http://dx.doi.org/10.53511/pharmkaz.2023.71.77.007.

Texto completo da fonte
Resumo:
Molybdenum transition metal compounds and nanoparticles have attracted much attention due to their unique physicochemical properties, multifunctional properties, and increased technological applications. This literature review reviewed the work of molybdenum compound biosensors based on research conducted over the past five years. Biosensors are analytical devices that combine a biological component and a physico-chemical component to produce a measured signal. In the course of the literature review, it was found that molybdenum-based biosensors were used to determine troponin-I, chronic myeloid leukemia, cyclic citrulline peptide, acetaminophen, Tau-381, dopamine, and epithelial cell adhesion molecules. It was found that these sensitive biomarkers are very effective for diagnosis, predicting the rate of development of the disease and rehabilitation, evaluating pharmacological treatment - one of the main obstacles in the study of diseases such as acute myocardial infarction, arthritis, cancer and Alzheimer's disease. As a result of the considered scientific works, such basic parameters of molybdenum-based biosensors as the detection limit relative to synthesis methods, electrochemical analysis methods, specificity, and the analysis under study were compared in tabular form. In general, the main purpose of this review is to conduct an analysis and a comprehensive review of the research work of molybdenum and its compounds used in the creation of a biosensor.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Alyea, Elmer C., e Arpad Somogyvari. "Molybdenum-95 nuclear magnetic resonance studies on disubstituted molybdenum(0) carbonyls". Canadian Journal of Chemistry 66, n.º 3 (1 de março de 1988): 397–400. http://dx.doi.org/10.1139/v88-069.

Texto completo da fonte
Resumo:
Molybdenum-95 nmr spectral data are reported for 40 cis- and trans-Mo(CO)4LL′ compounds and the chemical shifts discussed in relation to a simplified Ramsey expression for the paramagnetic shielding term. The identification of mixtures of products of the type Mo(CO)6−nLn is shown to be easily accomplished by 95Mo nmr spectroscopy. The 95Mo chemical shifts provide a sensitive probe of structural and electronic effects, as illustrated for several cyclic nitrogen ligands as well as a range of phosphine ligands in the Mo(CO)4LL′ complexes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Andersonmckay, J., GP Savage e GW Simpson. "Molybdenum Hexacarbonyl Promoted Ring-Opening of Hydroxyimino Isoxazoles: Unexpected Pyrazole Formation". Australian Journal of Chemistry 49, n.º 1 (1996): 163. http://dx.doi.org/10.1071/ch9960163.

Texto completo da fonte
Resumo:
Fused isoxazoles underwent reductive ring-opening in the presence of molybdenum hexacarbonyl to give the corresponding β-disubstituted compounds. 3,6,6-Trimethyl-6,7-dihydro-1,2-benzisoxazol-4(5H)-one oxime underwent reductive ring-opening in the presence of molybdenum hexacarbonyl to give 3,6,6-trimethyl-6,7-dihydro-1H-indazol-4(5H)-one. A mechanism is proposed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Tolibov, Behzod, e Abdurashid Hasanov. "Research In The Field Of Intensive Oxidative Roasting Of Molybdenum Sludges". American Journal of Applied sciences 03, n.º 09 (30 de setembro de 2021): 57–66. http://dx.doi.org/10.37547/tajas/volume03issue09-09.

Texto completo da fonte
Resumo:
The article deals with the issues of oxidative roasting of sulfide molybdenum-containing materials. The main indicators of production, the recommended parameters for optimal oxidation of sulfides are given as a result of experiments. Also, theoretical foundations and practical data are presented, conclusions on the oxidation of molybdenum sulfide compounds are analyzed and summarized. As a result of numerous laboratory experiments, conclusions have been drawn for the production.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

George, G. N., W. E. Cleland, J. H. Enemark, B. E. Smith, C. A. Kipke, S. A. Roberts e Stephen P. Cramer. "L-Edge spectroscopy of molybdenum compounds and enzymes". Journal of the American Chemical Society 112, n.º 7 (março de 1990): 2541–48. http://dx.doi.org/10.1021/ja00163a010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Honzíček, Jan, Jaromír Vinklárek, Milan Erben, Zdeňka Padělková, Lucie Šebestová e Martina Řezáčová. "Tetrafluoro-4-pyridyl substituted cyclopentadienyl molybdenum(II) compounds". Journal of Organometallic Chemistry 749 (janeiro de 2014): 387–93. http://dx.doi.org/10.1016/j.jorganchem.2013.10.034.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Evans, John, e J. Frederick W. Mosselmans. "Study of the XANES modeling of molybdenum compounds". Journal of the American Chemical Society 113, n.º 10 (maio de 1991): 3737–42. http://dx.doi.org/10.1021/ja00010a016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Abrantes, Marta, Anabela A. Valente, Martyn Pillinger, Isabel S. Gonçalves, João Rocha e Carlos C. Romão. "Epoxidation of olefins catalyzed by molybdenum–siloxane compounds". Inorganic Chemistry Communications 5, n.º 12 (dezembro de 2002): 1069–72. http://dx.doi.org/10.1016/s1387-7003(02)00642-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Marchetti, Fabio, Guido Pampaloni e Stefano Zacchini. "The interaction of molybdenum pentachloride with carbonyl compounds". Dalton Trans. 42, n.º 7 (2013): 2477–87. http://dx.doi.org/10.1039/c2dt32456c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Green, Malcolm L. H., Andrew Harrison, Philip Mountford e Dennis K. P. Ng. "One-dimensional antiferromagnetic cycloheptatrienyl molybdenum and tungsten compounds". Journal of the Chemical Society, Dalton Transactions, n.º 14 (1993): 2215. http://dx.doi.org/10.1039/dt9930002215.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Miyanaga, Takafumi, Nobuyuki Matsubayashi, Takao Fukumoto, Kunihiko Yokoi, Iwao Watanabe, Katsuo Murata e Shigero Ikeda. "EXAFS Study on Polynuclear Molybdenum and Tungsten Compounds". Chemistry Letters 17, n.º 3 (5 de março de 1988): 487–90. http://dx.doi.org/10.1246/cl.1988.487.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Orlov, V. M., e V. N. Kolosov. "Magnesiothermic reduction of tungsten and molybdenum oxide compounds". Doklady Chemistry 468, n.º 1 (maio de 2016): 162–66. http://dx.doi.org/10.1134/s0012500816050062.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Du Plessis, J. A. K., e H. C. M. Vosloo. "Molybdenum carbonyl compounds as catalysts for alkyne reactions". Journal of Molecular Catalysis 65, n.º 1-2 (março de 1991): 21–24. http://dx.doi.org/10.1016/0304-5102(91)85081-c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Mrózek, Ondřej, Lucie Melounková, Libor Dostál, Ivana Císařová, Aleš Eisner, Radim Havelek, Eva Peterová, Jan Honzíček e Jaromír Vinklárek. "Enhanced cytotoxicity of indenyl molybdenum(ii) compounds bearing a thiophene function". Dalton Transactions 48, n.º 30 (2019): 11361–73. http://dx.doi.org/10.1039/c9dt01698h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Pavlov, M. P., N. V. Morozova e V. N. Kudryavtsev. "Electrodeposition of nickel-molybdenum alloys from ammonium citrate baths containing intermediate valence molybdenum compounds". Protection of Metals 43, n.º 5 (setembro de 2007): 459–64. http://dx.doi.org/10.1134/s0033173207050074.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Ferretti, Eleonora, Mohammad Hayatifar, Fabio Marchetti, Guido Pampaloni e Stefano Zacchini. "Molybdenum(V) and molybdenum(IV) coordination compounds from the reactions of MoCl5 with sulfones". Polyhedron 100 (novembro de 2015): 400–403. http://dx.doi.org/10.1016/j.poly.2015.09.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Arzoumanian, Henri, André Baldy, Marcel Pierrot e Jean-François Petrignani. "Reaction of molybdenum—molybdenum triple bonded compounds with group VIII peroxo-transition metal complexes". Journal of Organometallic Chemistry 294, n.º 3 (outubro de 1985): 327–31. http://dx.doi.org/10.1016/0022-328x(85)87448-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Galevskii, G. V., O. A. Polyakh, V. V. Rudneva e A. E. Anikin. "Analysis of the current state of molybdenum mineral and raw material base, mining and processing of molybdenum-containing ores". Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 76, n.º 7 (11 de agosto de 2020): 665–75. http://dx.doi.org/10.32339/0135-5910-2020-7-665-675.

Texto completo da fonte
Resumo:
Molybdenum has a complex of practically significant properties and is widely used for alloying steels and cast irons, in the composition of alloys of various purposes, as well as a structural material in pure form. Molybdenum belongs to the group of rare metals, which causes the relevance of analytical research of the modern state of the mineral- raw material base of molybdenum, extraction and processing of molybdenum-containing ores. The results of analysis of the mineral-raw material base of molybdenum of foreign countries and Russia, assessment of prospects of its expansion are presented. The confirmed world molybdenum resources amount to 12 million tons, including domestic – 2 million tons. 75% of molybdenum reserves are concentrated in the USA, China, Chile, Peru and Canada. Description of the types of deposits of molybdenum, copper-molybdenum and molybdenum-tungsten ores, the main types of molybdenum minerals has been quoted. Methods of ore concentration of various composition for production of molybdenum concentrates, additional enrichment of molybdenum concentrate and industrial practice of molybdenum concentrate processing are considered. In terms of ore quality domestic and foreign raw material base of molybdenum are comparable. 63% of domestic production of molybdenum-containing ores is provided by OJSC “Sorsky GOK”, 33% – OJSC “Zhirekenskiy GOK”. These enterprises produce molybdenum concentrates of grades КМФ-5, КМФ-6, КМФ-7. Their production capacity is about 12 thousand tons of concentrate per year. Molybdenum concentrates are processed by pyro- and hydrometallurgical methods and are an industrial product for production of ferromolybdenum and its chemical compounds. The total capacity of molybdenum concentrate processing plants is 300 thousand tons per year.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia