Literatura científica selecionada sobre o tema "Molecular selectivity"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Molecular selectivity".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Molecular selectivity"
Murray, Royce. "Chemical Sensors and Molecular Selectivity". Analytical Chemistry 66, n.º 9 (abril de 1994): 505a. http://dx.doi.org/10.1021/ac00081a600.
Texto completo da fonteSomorjai, Gabor A, e Jeong Y Park. "Molecular Factors of Catalytic Selectivity". Angewandte Chemie International Edition 47, n.º 48 (12 de novembro de 2008): 9212–28. http://dx.doi.org/10.1002/anie.200803181.
Texto completo da fonteLiu, Guangyang, Xiaodong Huang, Lingyun Li, Xiaomin Xu, Yanguo Zhang, Jun Lv e Donghui Xu. "Recent Advances and Perspectives of Molecularly Imprinted Polymer-Based Fluorescent Sensors in Food and Environment Analysis". Nanomaterials 9, n.º 7 (18 de julho de 2019): 1030. http://dx.doi.org/10.3390/nano9071030.
Texto completo da fonteCandeago, Riccardo, Hanyu Wang, Manh-Thuong Nguyen, Mathieu Doucet, Vassiliki Alexandra Glezakou, Jim Browning e Xiao Su. "Molecular Insights into Redox-Active Polymer Interfaces: Solvation and Ion Valency Effects on Metal Oxyanion Selectivity". ECS Meeting Abstracts MA2024-01, n.º 55 (9 de agosto de 2024): 2910. http://dx.doi.org/10.1149/ma2024-01552910mtgabs.
Texto completo da fonteRauschenberg, Melanie, Eva-Corrina Fritz, Christian Schulz, Tobias Kaufmann e Bart Jan Ravoo. "Molecular recognition of surface-immobilized carbohydrates by a synthetic lectin". Beilstein Journal of Organic Chemistry 10 (16 de junho de 2014): 1354–64. http://dx.doi.org/10.3762/bjoc.10.138.
Texto completo da fonteFarman, Nicolette, e Brigitte Bocchi. "Mineralocorticoid selectivity: Molecular and cellular aspects". Kidney International 57, n.º 4 (abril de 2000): 1364–69. http://dx.doi.org/10.1046/j.1523-1755.2000.00976.x.
Texto completo da fonteComba, Peter. "Metal ion selectivity and molecular modeling". Coordination Chemistry Reviews 185-186 (maio de 1999): 81–98. http://dx.doi.org/10.1016/s0010-8545(98)00249-5.
Texto completo da fonteLaskin, Julia, Alexander Laskin, Sergey A. Nizkorodov, Patrick Roach, Peter Eckert, Mary K. Gilles, Bingbing Wang, Hyun Ji (Julie) Lee e Qichi Hu. "Molecular Selectivity of Brown Carbon Chromophores". Environmental Science & Technology 48, n.º 20 (7 de outubro de 2014): 12047–55. http://dx.doi.org/10.1021/es503432r.
Texto completo da fonteEpa, Kanishka, Christer B. Aakeröy, John Desper, Sundeep Rayat, Kusum Lata Chandra e Aurora J. Cruz-Cabeza. "Controlling molecular tautomerism through supramolecular selectivity". Chemical Communications 49, n.º 72 (2013): 7929. http://dx.doi.org/10.1039/c3cc43935f.
Texto completo da fonteSouverijns, Wim, Lieve Rombouts, Johan A. Martens e Pierre A. Jacobs. "Molecular shape selectivity of EUO zeolites". Microporous Materials 4, n.º 2-3 (junho de 1995): 123–30. http://dx.doi.org/10.1016/0927-6513(94)00091-9.
Texto completo da fonteTeses / dissertações sobre o assunto "Molecular selectivity"
Rajbanshi, Arbin. "Supramolecular interactions from small-molecule selectivity to molecular capsules". Diss., Manhattan, Kan. : Kansas State University, 2010. http://hdl.handle.net/2097/3879.
Texto completo da fonteBouanga, Boudiombo Jacky Sorrel. "Molecular selectivity by host-guest methods". Doctoral thesis, Faculty of Science, 2021. http://hdl.handle.net/11427/33667.
Texto completo da fonteFransson, Linda. "Molecular modelling - understanding and prediction of enzyme selectivity". Licentiate thesis, KTH, School of Biotechnology (BIO), 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10532.
Texto completo da fonteMolecular modelling strategies for evaluation of enzyme selectivity wereinvestigated with a focus on principles of how molecular interactionscould be evaluated to provide information about selectivity. Althoughmolecular modelling provides tools for evaluation of geometrical andenergy features of molecular systems, no general strategies for evaluationof enzyme selectivity exist. Geometrical analyses can be based uponinspection and reasoning about molecular interactions, which provide aneasily accessible way to gain information, but suffer from the risk of biasput in by the modeller. They can also be based on geometrical features ofmolecular interactions such as bond lengths and hydrogen-bond formation.Energy analyses are appealing for their modeller independenceand for the possibility to predict not only stereopreference, but also itsmagnitude.In this thesis, four examples of enantio- or regioselective serinehydrolase-catalysed reaction systems are presented together with developedmodelling protocols for explanation, prediction or enhancement ofselectivity. Geometrical as well as energy-based methodology were used,and provided an understanding of the structural basis of enzymeselectivity. In total, the protocols were successful in making qualitative explanationsand predictions of stereoselectivity, although quantitative determinationswere not achieved.
Heung, Yen Ming Mary. "Molecular selectivity of phospholipase D in granulocyte function". Thesis, University of Southampton, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241935.
Texto completo da fonteMaughfling, Edward John Rosewarne. "Molecular basis for the ligand selectivity of bombesin receptors". Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.625098.
Texto completo da fonteBauer, Paul. "Computational modelling of enzyme selectivity". Doctoral thesis, Uppsala universitet, Struktur- och molekylärbiologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-326108.
Texto completo da fonteErlenbach, Isolde. "The molecular basis of V2 vasopressin receptor-G protein coupling selectivity". [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963474448.
Texto completo da fonteKröger, Wendy Lee. "A molecular basis for the C-domain selectivity of angiotensin-converting enzyme". Doctoral thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/3134.
Texto completo da fonteKroger, W. "A Molecular Basis for the C-Domain Selectivity of Angiotensin-Converting Enzyme". Doctoral thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/3135.
Texto completo da fonteBlgacim, Nuria. "Molecular Control of the δ-opioid Receptor Signaling and Functional Selectivity by Sodium". Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37806.
Texto completo da fonteLivros sobre o assunto "Molecular selectivity"
Hathway, D. E. Molecular mechanisms of herbicide selectivity. Oxford: Clarendon, 1989.
Encontre o texto completo da fonteDe Matteis, F., e E. A. Lock. Selectivity and Molecular Mechanisms of Toxicity. London: Palgrave Macmillan UK, 1987. http://dx.doi.org/10.1007/978-1-349-08759-4.
Texto completo da fonteA, Lock E., ed. Selectivity and molecular mechanisms of toxicity. Basingstoke: Macmillan, 1987.
Encontre o texto completo da fonteSokell, Emma Jane. A study of decay route selectivity in atomic and molecular autoionisation using two-dimensional photoelectron spectroscopy. Manchester: University of Manchester, 1995.
Encontre o texto completo da fonteCrowe, Declan Brendan. Macrocyclic host molecules designed to selectively bind and transport ammonium and primary ammonium guest cations. Birmingham: University of Birmingham, 1991.
Encontre o texto completo da fonteMolecular mechanisms of herbicide selectivity. Oxford [England]: Oxford University Press, 1989.
Encontre o texto completo da fonte(Editor), E. A. Lock, ed. Selectivity and Molecular Mechanisms of Toxicity. Macmillan Pub Co, 1987.
Encontre o texto completo da fonteMatteis, Francesco De, e Edward A. Lock. Selectivity and Molecular Mechanisms of Toxicity. Palgrave Macmillan, 1987.
Encontre o texto completo da fonteKnaggs, Roger D. The molecular structure of the μ-opioid receptor. Editado por Paul Farquhar-Smith, Pierre Beaulieu e Sian Jagger. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198834359.003.0038.
Texto completo da fonteMolecular dipoles in non-polar solvent: A mechanistic investigation of complexation phenomena and selectivity in asymmetric urea-super acid cocatalysis. 2010.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Molecular selectivity"
Guengerich, F. Peter. "Sequence Selectivity of DNA Damage". In Molecular Life Sciences, 1–3. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-6436-5_214-1.
Texto completo da fonteGuengerich, Frederick Peter. "Sequence Selectivity of DNA Damage". In Molecular Life Sciences, 1126–28. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-1531-2_214.
Texto completo da fonteNassimbeni, L. R. "Inclusion Compounds: Kinetics and Selectivity". In Molecular Recognition and Inclusion, 135–52. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5288-4_16.
Texto completo da fonteFerrie, Ann M., Vasiliy Goral, Chaoming Wang e Ye Fang. "Label-Free Functional Selectivity Assays". In Methods in Molecular Biology, 227–46. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2336-6_16.
Texto completo da fonteStace, A. J., e D. M. Bernard. "Reactions of Molecular Ions in Association with Inert Gas Clusters". In Selectivity in Chemical Reactions, 365–72. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3047-6_20.
Texto completo da fonteGuengerich, F. Peter. "Selectivity of Chemicals for DNA Damage". In Molecular Life Sciences, 1–3. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-6436-5_163-1.
Texto completo da fonteGuengerich, Frederick Peter. "Selectivity of Chemicals for DNA Damage". In Molecular Life Sciences, 1111–13. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-1531-2_163.
Texto completo da fonteBreslow, R. "Biomimetic Control of Chemical Selectivity". In Design and Synthesis of Organic Molecules Based on Molecular Recognition, 185–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70926-5_15.
Texto completo da fonteStumpfe, Dagmar, Eugen Lounkine e Jürgen Bajorath. "Molecular Test Systems for Computational Selectivity Studies and Systematic Analysis of Compound Selectivity Profiles". In Methods in Molecular Biology, 503–15. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-839-3_20.
Texto completo da fonteWatts, Anthony. "Molecular Dynamics and Selectivity in Biomembranes". In Membrane Receptors, Dynamics, and Energetics, 329–39. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5335-5_28.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Molecular selectivity"
Russo, Michael J., Simon H. Friedman, Jens O. M. Karlsson e Mehmet Toner. "A Two-Compartment Membrane Limited Model of Molecular Transport Through Nano-Scale Pores With a Metal-Actuated Switch". In ASME 1997 International Mechanical Engineering Congress and Exposition, 9–14. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1306.
Texto completo da fonteRamachandran, Abhijit, Qingjiang Guo, Samir Iqbal e Yaling Liu. "Modeling DNA Translocation Kinetics in Nanopores With Selectivity". In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13074.
Texto completo da fonteVitale, U., A. Rechichi, M. D’Alonzo, C. Cristallini, N. Barbani, G. Ciardelli e P. Giusti. "Selective Peptide Recognition With Molecularly Imprinted Polymers in Designing New Biomedical Devices". In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95587.
Texto completo da fonteCannon, James J., Dai Tang e Daejoong Kim. "A Molecular Dynamics Study on the Absorption of Ions Into Carbon Nanotubes". In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30579.
Texto completo da fonteZia, Asif I., S. C. Mukhopadhyay, I. H. Al-Bahadly, P. L. Yu, Chinthaka P. Gooneratne e Jurgen Kosel. "Introducing molecular selectivity in rapid impedimetric sensing of phthalates". In 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2014. http://dx.doi.org/10.1109/i2mtc.2014.6860861.
Texto completo da fonteWadman, Grant, Irina Kufareva, John Dawson, Penglie Zhang, Andrew Tebben, Percy Carter, Siyi Gu et al. "Molecular Mechanisms of Antagonist Selectivity Against CCR2 and CCR5". In ASPET 2024 Annual Meeting Abstract. American Society for Pharmacology and Experimental Therapeutics, 2024. http://dx.doi.org/10.1124/jpet.569.131403.
Texto completo da fonteWeiner, A. M., D. E. Leaird, G. P. Wiederrecht e K. A. Nelson. "Femtosecond multiple pulse impulsive simulated Raman scattering in α-perylene molecular crystals". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.fx5.
Texto completo da fonteTarhan, M. C., R. Yokokawa, F. O. Morin, S. Takeuchi e H. Fujita. "Sorting and direct transportation of target molecules by bio-molecular selectivity and motor function". In 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2007. http://dx.doi.org/10.1109/memsys.2007.4433049.
Texto completo da fonteHiggins, M. J., M. Polcik, T. Fukuma, J. E. Sader e S. P. Jarvis. "Direct Mechanical Measurement of Organised Water and the Influence of Adjacent Surface Chemistry Using Atomic Force Microscopy (Keynote)". In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-64383.
Texto completo da fonteKessler, Rudolf. "Sensitivity and selectivity in optical spectroscopy and imaging: A molecular approach". In OCM 2015 - 2nd International Conference on Optical Characterization of Materials. KIT Scientific Publishing, 2015. http://dx.doi.org/10.58895/ksp/1000044906-7.
Texto completo da fonteRelatórios de organizações sobre o assunto "Molecular selectivity"
Rigali, Mark J., e Thomas Austin Stewart. Evaluation of Strontium Selectivity by Sandia Octahedral Molecular Sieves (SOMS). Office of Scientific and Technical Information (OSTI), janeiro de 2016. http://dx.doi.org/10.2172/1236112.
Texto completo da fonteIvanov, Aleksandr, Sadananda Das, Vyacheslav Bryantsev, Costas Tsouris, Austin Ladshaw e Sotira Yiacoumi. Predicting Selectivity of Uranium vs. Vanadium from First Principles: Complete Molecular Design and Adsorption Modeling. Office of Scientific and Technical Information (OSTI), julho de 2017. http://dx.doi.org/10.2172/1454410.
Texto completo da fonteGurevitz, Michael, Michael E. Adams e Boaz Shaanan. Structural Elements and Neuropharmacological Features Involved in the Insecticidal Properties of an Alpha Scorpion Neurotoxin: A Multidisciplinary Approach. United States Department of Agriculture, agosto de 1995. http://dx.doi.org/10.32747/1995.7573061.bard.
Texto completo da fonteGurevitz, Michael, Michael E. Adams, Boaz Shaanan, Oren Froy, Dalia Gordon, Daewoo Lee e Yong Zhao. Interacting Domains of Anti-Insect Scorpion Toxins and their Sodium Channel Binding Sites: Structure, Cooperative Interactions with Agrochemicals, and Application. United States Department of Agriculture, dezembro de 2001. http://dx.doi.org/10.32747/2001.7585190.bard.
Texto completo da fonteGurevitz, Michael, William A. Catterall e Dalia Gordon. face of interaction of anti-insect selective toxins with receptor site-3 on voltage-gated sodium channels as a platform for design of novel selective insecticides. United States Department of Agriculture, dezembro de 2013. http://dx.doi.org/10.32747/2013.7699857.bard.
Texto completo da fonteGurevitz, Michael, William A. Catterall e Dalia Gordon. Learning from Nature How to Design Anti-insect Selective Pesticides - Clarification of the Interacting Face between Insecticidal Toxins and their Na-channel Receptors. United States Department of Agriculture, janeiro de 2010. http://dx.doi.org/10.32747/2010.7697101.bard.
Texto completo da fonteBanai, Menachem, e Gary Splitter. Molecular Characterization and Function of Brucella Immunodominant Proteins. United States Department of Agriculture, julho de 1993. http://dx.doi.org/10.32747/1993.7568100.bard.
Texto completo da fonteAltstein, Miriam, e Ronald Nachman. Rationally designed insect neuropeptide agonists and antagonists: application for the characterization of the pyrokinin/Pban mechanisms of action in insects. United States Department of Agriculture, outubro de 2006. http://dx.doi.org/10.32747/2006.7587235.bard.
Texto completo da fonteLee, Richard, Moshe Bar-Joseph, K. S. Derrick, Aliza Vardi, Roland Brlansky, Yuval Eshdat e Charles Powell. Production of Antibodies to Citrus Tristeza Virus in Transgenic Citrus. United States Department of Agriculture, setembro de 1995. http://dx.doi.org/10.32747/1995.7613018.bard.
Texto completo da fonteKumar, Aishani, Thendral Yalini e Sunil Kumar C. Unlocking Cellular Control: The Promise of PROTACs in Disease Intervention. Science Reviews - Biology, maio de 2024. http://dx.doi.org/10.57098/scirevs.biology.3.2.1.
Texto completo da fonte