Siga este link para ver outros tipos de publicações sobre o tema: Molecular magnetic resonance imaging.

Artigos de revistas sobre o tema "Molecular magnetic resonance imaging"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Molecular magnetic resonance imaging".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Modo, Mike, e Steve C. R. Williams. "Molecular Imaging by Magnetic Resonance Imaging". Rivista di Neuroradiologia 16, n.º 2_suppl_part2 (setembro de 2003): 23–27. http://dx.doi.org/10.1177/1971400903016sp207.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Sosnovik, David E. "Molecular Imaging in Cardiovascular Magnetic Resonance Imaging". Topics in Magnetic Resonance Imaging 19, n.º 1 (fevereiro de 2008): 59–68. http://dx.doi.org/10.1097/rmr.0b013e318176c57b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Terreno, Enzo, Daniela Delli Castelli, Alessandra Viale e Silvio Aime. "Challenges for Molecular Magnetic Resonance Imaging". Chemical Reviews 110, n.º 5 (12 de maio de 2010): 3019–42. http://dx.doi.org/10.1021/cr100025t.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

LANZA, G., P. WINTER, S. CARUTHERS, A. MORAWSKI, A. SCHMIEDER, K. CROWDER e S. WICKLINE. "Magnetic resonance molecular imaging with nanoparticles". Journal of Nuclear Cardiology 11, n.º 6 (dezembro de 2004): 733–43. http://dx.doi.org/10.1016/j.nuclcard.2004.09.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Curtis, R. J. "Magnetic resonance imaging." Annals of the Rheumatic Diseases 50, n.º 1 (1 de janeiro de 1991): 66. http://dx.doi.org/10.1136/ard.50.1.66-c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Sosnovik, David E., Matthias Nahrendorf e Ralph Weissleder. "Molecular Magnetic Resonance Imaging in Cardiovascular Medicine". Circulation 115, n.º 15 (17 de abril de 2007): 2076–86. http://dx.doi.org/10.1161/circulationaha.106.658930.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Peterson, Eric C., e Louis J. Kim. "Magnetic Resonance Imaging at the Molecular Level". World Neurosurgery 73, n.º 6 (junho de 2010): 604–5. http://dx.doi.org/10.1016/j.wneu.2010.06.044.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Winter, Patrick M., e Michael D. Taylor. "Magnetic Resonance Molecular Imaging of Plaque Angiogenesis". Current Cardiovascular Imaging Reports 5, n.º 1 (3 de janeiro de 2012): 36–44. http://dx.doi.org/10.1007/s12410-011-9121-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Rothwell, William P. "Nuclear magnetic resonance imaging". Applied Optics 24, n.º 23 (1 de dezembro de 1985): 3958. http://dx.doi.org/10.1364/ao.24.003958.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Goldman, M. "Nuclear Magnetic Resonance Imaging". Physica Scripta T19B (1 de janeiro de 1987): 476–80. http://dx.doi.org/10.1088/0031-8949/1987/t19b/025.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Burgstahler, Christof, Vinzenz Hombach e Volker Rasche. "Molecular Imaging of Vulnerable Plaque by Cardiac Magnetic Resonance Imaging". Seminars in Thrombosis and Hemostasis 33, n.º 2 (março de 2007): 165–72. http://dx.doi.org/10.1055/s-2007-969030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Chakraborty, Shamik, Francesco Priamo e John A. Boockvar. "Magnetic Resonance Imaging to Identify Glioblastoma Molecular Phenotypes". Neurosurgery 78, n.º 2 (fevereiro de 2016): N20—N21. http://dx.doi.org/10.1227/01.neu.0000479895.10242.9d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Sasaki, Makoto. "Magnetic resonance molecular imaging: applications to stroke management". Nosotchu 30, n.º 6 (2008): 822–24. http://dx.doi.org/10.3995/jstroke.30.822.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Boesch, Chris. "Molecular aspects of magnetic resonance imaging and spectroscopy". Molecular Aspects of Medicine 20, n.º 4-5 (agosto de 1999): 185–318. http://dx.doi.org/10.1016/s0098-2997(99)00007-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Artemov, Dmitri. "Molecular magnetic resonance imaging with targeted contrast agents". Journal of Cellular Biochemistry 90, n.º 3 (26 de setembro de 2003): 518–24. http://dx.doi.org/10.1002/jcb.10660.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Hajhosseiny, Reza, Tamanna S. Bahaei, Claudia Prieto e René M. Botnar. "Molecular and Nonmolecular Magnetic Resonance Coronary and Carotid Imaging". Arteriosclerosis, Thrombosis, and Vascular Biology 39, n.º 4 (abril de 2019): 569–82. http://dx.doi.org/10.1161/atvbaha.118.311754.

Texto completo da fonte
Resumo:
Atherosclerosis is the leading cause of cardiovascular morbidity and mortality. Over the past 2 decades, increasing research attention is converging on the early detection and monitoring of atherosclerotic plaque. Among several invasive and noninvasive imaging modalities, magnetic resonance imaging (MRI) is emerging as a promising option. Advantages include its versatility, excellent soft tissue contrast for plaque characterization and lack of ionizing radiation. In this review, we will explore the recent advances in multicontrast and multiparametric imaging sequences that are bringing the aspiration of simultaneous arterial lumen, vessel wall, and plaque characterization closer to clinical feasibility. We also discuss the latest advances in molecular magnetic resonance and multimodal atherosclerosis imaging.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Goh, ASW, e DCE Ng. "Positron Emission Tomography – A Vital Component of Molecular Imaging". Annals of the Academy of Medicine, Singapore 33, n.º 2 (15 de março de 2004): 131. http://dx.doi.org/10.47102/annals-acadmedsg.v33n2p131.

Texto completo da fonte
Resumo:
Contemporary medical imaging is progressing towards quantification of tissue function in addition to merely providing anatomical information, as illustrated by the rising use of such modalities as functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS) and positron emission tomography (PET). As far back as 1951, positron-emitting radiotracers have been used for localisation of brain tumours at the Massachusetts General Hospital (MGH).
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Cohen, Mark S. "Real-Time Functional Magnetic Resonance Imaging". Methods 25, n.º 2 (outubro de 2001): 201–20. http://dx.doi.org/10.1006/meth.2001.1235.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Sirol, Marc, Valentin Fuster e Zahi Fayad. "Plaque Imaging and Characterization Using Magnetic Resonance Imaging: Towards Molecular Assessment". Current Molecular Medicine 6, n.º 5 (1 de agosto de 2006): 541–48. http://dx.doi.org/10.2174/156652406778018617.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Zhou, Heling, Jason H. Stafford, Rami R. Hallac, Liang Zhang, Gang Huang, Ralph P. Mason, Jinming Gao, Philip E. Thorpe e Dawen Zhao. "Phosphatidylserine-Targeted Molecular Imaging of Tumor Vasculature by Magnetic Resonance Imaging". Journal of Biomedical Nanotechnology 10, n.º 5 (1 de maio de 2014): 846–55. http://dx.doi.org/10.1166/jbn.2014.1851.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Mostert, Jacob M., Niels B. J. Dur, Xiufeng Li, Jutta M. Ellermann, Robert Hemke, Laurel Hales, Valentina Mazzoli et al. "Advanced Magnetic Resonance Imaging and Molecular Imaging of the Painful Knee". Seminars in Musculoskeletal Radiology 27, n.º 06 (7 de novembro de 2023): 618–31. http://dx.doi.org/10.1055/s-0043-1775741.

Texto completo da fonte
Resumo:
AbstractChronic knee pain is a common condition. Causes of knee pain include trauma, inflammation, and degeneration, but in many patients the pathophysiology remains unknown. Recent developments in advanced magnetic resonance imaging (MRI) techniques and molecular imaging facilitate more in-depth research focused on the pathophysiology of chronic musculoskeletal pain and more specifically inflammation. The forthcoming new insights can help develop better targeted treatment, and some imaging techniques may even serve as imaging biomarkers for predicting and assessing treatment response in the future. This review highlights the latest developments in perfusion MRI, diffusion MRI, and molecular imaging with positron emission tomography/MRI and their application in the painful knee. The primary focus is synovial inflammation, also known as synovitis. Bone perfusion and bone metabolism are also addressed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Sosnovik, David E., e Marielle Scherrer-Crosbie. "Biomedical Imaging in Experimental Models of Cardiovascular Disease". Circulation Research 130, n.º 12 (10 de junho de 2022): 1851–68. http://dx.doi.org/10.1161/circresaha.122.320306.

Texto completo da fonte
Resumo:
Major advances in biomedical imaging have occurred over the last 2 decades and now allow many physiological, cellular, and molecular processes to be imaged noninvasively in small animal models of cardiovascular disease. Many of these techniques can be also used in humans, providing pathophysiological context and helping to define the clinical relevance of the model. Ultrasound remains the most widely used approach, and dedicated high-frequency systems can obtain extremely detailed images in mice. Likewise, dedicated small animal tomographic systems have been developed for magnetic resonance, positron emission tomography, fluorescence imaging, and computed tomography in mice. In this article, we review the use of ultrasound and positron emission tomography in small animal models, as well as emerging contrast mechanisms in magnetic resonance such as diffusion tensor imaging, hyperpolarized magnetic resonance, chemical exchange saturation transfer imaging, magnetic resonance elastography and strain, arterial spin labeling, and molecular imaging.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Heron, C. W. "Magnetic resonance imaging in rheumatology." Annals of the Rheumatic Diseases 51, n.º 12 (1 de dezembro de 1992): 1287–91. http://dx.doi.org/10.1136/ard.51.12.1287.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Cyrus, Tillmann, Patrick M. Winter, Shelton D. Caruthers, Samuel A. Wickline e Gregory M. Lanza. "Magnetic resonance nanoparticles for cardiovascular molecular imaging and therapy". Expert Review of Cardiovascular Therapy 3, n.º 4 (julho de 2005): 705–15. http://dx.doi.org/10.1586/14779072.3.4.705.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Gimi, B., A. P. Pathak, E. Ackerstaff, K. Glunde, D. Artemov e Z. M. Bhujwalla. "Molecular Imaging of Cancer: Applications of Magnetic Resonance Methods". Proceedings of the IEEE 93, n.º 4 (abril de 2005): 784–99. http://dx.doi.org/10.1109/jproc.2005.844266.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Caravan, Peter, Yan Yang, Roshini Zachariah, Anthony Schmitt, Mari Mino-Kenudson, Howard H. Chen, David E. Sosnovik, Guangping Dai, Bryan C. Fuchs e Michael Lanuti. "Molecular Magnetic Resonance Imaging of Pulmonary Fibrosis in Mice". American Journal of Respiratory Cell and Molecular Biology 49, n.º 6 (dezembro de 2013): 1120–26. http://dx.doi.org/10.1165/rcmb.2013-0039oc.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Lee, T., L. X. Cai, V. S. Lelyveld, A. Hai e A. Jasanoff. "Molecular-Level Functional Magnetic Resonance Imaging of Dopaminergic Signaling". Science 344, n.º 6183 (1 de maio de 2014): 533–35. http://dx.doi.org/10.1126/science.1249380.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Utsumi, Hideo. "Novel Redox Molecular Imaging “ReMI” with Dual Magnetic Resonance". YAKUGAKU ZASSHI 133, n.º 7 (1 de julho de 2013): 803–14. http://dx.doi.org/10.1248/yakushi.13-00139.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Schroder, L., T. J. Lowery, C. Hilty, D. E. Wemmer e A. Pines. "Molecular Imaging Using a Targeted Magnetic Resonance Hyperpolarized Biosensor". Science 314, n.º 5798 (20 de outubro de 2006): 446–49. http://dx.doi.org/10.1126/science.1131847.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Gu, Jeffrey T., Linda Nguyen, Abhijit J. Chaudhari e John D. MacKenzie. "Molecular Characterization of Rheumatoid Arthritis With Magnetic Resonance Imaging". Topics in Magnetic Resonance Imaging 22, n.º 2 (abril de 2011): 61–69. http://dx.doi.org/10.1097/rmr.0b013e31825c062c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Nörenberg, Dominik, Hans U. Ebersberger, Gerd Diederichs, Bernd Hamm, René M. Botnar e Marcus R. Makowski. "Molecular magnetic resonance imaging of atherosclerotic vessel wall disease". European Radiology 26, n.º 3 (3 de julho de 2015): 910–20. http://dx.doi.org/10.1007/s00330-015-3881-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Kozlowska, Dorota, Paul Foran, Peter MacMahon, Martin J. Shelly, Stephen Eustace e Richard O'Kennedy. "Molecular and magnetic resonance imaging: The value of immunoliposomes". Advanced Drug Delivery Reviews 61, n.º 15 (dezembro de 2009): 1402–11. http://dx.doi.org/10.1016/j.addr.2009.09.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Lacerda, Sara, e Éva Tóth. "Lanthanide Complexes in Molecular Magnetic Resonance Imaging and Theranostics". ChemMedChem 12, n.º 12 (30 de maio de 2017): 883–94. http://dx.doi.org/10.1002/cmdc.201700210.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Kader, Avan, Jan O. Kaufmann, Dilyana B. Mangarova, Jana Moeckel, Lisa C. Adams, Julia Brangsch, Jennifer L. Heyl et al. "Collagen-Specific Molecular Magnetic Resonance Imaging of Prostate Cancer". International Journal of Molecular Sciences 24, n.º 1 (31 de dezembro de 2022): 711. http://dx.doi.org/10.3390/ijms24010711.

Texto completo da fonte
Resumo:
Constant interactions between tumor cells and the extracellular matrix (ECM) influence the progression of prostate cancer (PCa). One of the key components of the ECM are collagen fibers, since they are responsible for the tissue stiffness, growth, adhesion, proliferation, migration, invasion/metastasis, cell signaling, and immune recruitment of tumor cells. To explore this molecular marker in the content of PCa, we investigated two different tumor volumes (500 mm3 and 1000 mm3) of a xenograft mouse model of PCa with molecular magnetic resonance imaging (MRI) using a collagen-specific probe. For in vivo MRI evaluation, T1-weighted sequences before and after probe administration were analyzed. No significant signal difference between the two tumor volumes could be found. However, we detected a significant difference between the signal intensity of the peripheral tumor area and the central area of the tumor, at both 500 mm3 (p < 0.01, n = 16) and at 1000 mm3 (p < 0.01, n = 16). The results of our histologic analyses confirmed the in vivo studies: There was no significant difference in the amount of collagen between the two tumor volumes (p > 0.05), but within the tumor, higher collagen expression was observed in the peripheral area compared with the central area of the tumor. Laser ablation with inductively coupled plasma mass spectrometry further confirmed these results. The 1000 mm3 tumors contained 2.8 ± 1.0% collagen and the 500 mm3 tumors contained 3.2 ± 1.2% (n = 16). There was a strong correlation between the in vivo MRI data and the ex vivo histological data (y = −0.068x + 1.1; R2 = 0.74) (n = 16). The results of elemental analysis by inductively coupled plasma mass spectrometry supported the MRI data (y = 3.82x + 0.56; R2 = 0.79; n = 7). MRI with the collagen-specific probe in PCa enables differentiation between different tumor areas. This may help to differentiate tumor from healthy tissue, potentially identifying tumor areas with a specific tumor biology.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Kickingereder, Philipp, e Ovidiu Andronesi. "Radiomics, Metabolic, and Molecular MRI for Brain Tumors". Seminars in Neurology 38, n.º 01 (fevereiro de 2018): 032–40. http://dx.doi.org/10.1055/s-0037-1618600.

Texto completo da fonte
Resumo:
Magnetic resonance imaging plays a key role in diagnosis and treatment monitoring of brain tumors. Novel imaging techniques that specifically interrogate aspects of underlying tumor biology and biochemical pathways have great potential in neuro-oncology. This review focuses on the emerging role of 2-hydroxyglutarate-targeted magnetic resonance spectroscopy, as well as radiomics and radiogenomics in establishing diagnosis for isocitrate dehydrogenase mutant gliomas, and for monitoring treatment response and predicting prognosis of this group of brain tumor patients.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Schiller, Stephan, e R. L. Byer. "Subwavelength optical magnetic-resonance imaging". Journal of the Optical Society of America A 9, n.º 5 (1 de maio de 1992): 683. http://dx.doi.org/10.1364/josaa.9.000683.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Lauterbur, Paul C. "Nuclear magnetic resonance microscopy". Proceedings, annual meeting, Electron Microscopy Society of America 47 (6 de agosto de 1989): 828–29. http://dx.doi.org/10.1017/s0424820100156110.

Texto completo da fonte
Resumo:
Nuclear magnetic resonance imaging can reach microscopic resolution, as was noted many years ago, but the first serious attempt to explore the limits of the possibilities was made by Hedges. Resolution is ultimately limited under most circumstances by the signal-to-noise ratio, which is greater for small radio receiver coils, high magnetic fields and long observation times. The strongest signals in biological applications are obtained from water protons; for the usual magnetic fields used in NMR experiments (2-14 tesla), receiver coils of one to several millimeters in diameter, and observation times of a number of minutes, the volume resolution will be limited to a few hundred or thousand cubic micrometers. The proportions of voxels may be freely chosen within wide limits by varying the details of the imaging procedure. For isotropic resolution, therefore, objects of the order of (10μm) may be distinguished.Because the spatial coordinates are encoded by magnetic field gradients, the NMR resonance frequency differences, which determine the potential spatial resolution, may be made very large. As noted above, however, the corresponding volumes may become too small to give useful signal-to-noise ratios. In the presence of magnetic field gradients there will also be a loss of signal strength and resolution because molecular diffusion causes the coherence of the NMR signal to decay more rapidly than it otherwise would. This phenomenon is especially important in microscopic imaging.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Johnson, Sandra M., Hong-Ming Cheng, Roberto Pineda e Peter A. Netland. "Magnetic resonance imaging of cyclodialysis clefts". Graefe's Archive for Clinical and Experimental Ophthalmology 235, n.º 7 (julho de 1997): 468–71. http://dx.doi.org/10.1007/bf00947068.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Yu, Zhi, Michael Grafe, Heike Meyborg, Eckart Fleck e Yangqiu Li. "In Vitro Characterization of Magnetic Resonance Imaging Contrast Agents for Molecular Imaging." Blood 108, n.º 11 (16 de novembro de 2006): 3944. http://dx.doi.org/10.1182/blood.v108.11.3944.3944.

Texto completo da fonte
Resumo:
Abstract The aim of this work was to evaluate the biological properties of one citrate-coated and two different dextran-coated paramagnetic particles with comparable size (iron core 4–10 nm). Endothelial cells from humans and mice as well as human macrophages were incubated for different time intervals with different particle suspensions. The cellular uptake was semi-quantitatively measured using the Prussian blue staining and, in addition, by cellular iron content. Furthermore the effect of known inhibitors of endocytosis was evaluated. In addition, it was evaluated whether linking of monoclonal antibodies to dextran-coated particles can make them bind specifically to certain cell surface structures. The results showed that the bEnd.3 cell line, human umbilical vein endothelial cells (HUVECs) and THP-1/macrophage cell lines internalize paramagnetic particles. The ranking of cellular uptake was: VSOP &gt; CMD-coated particles &gt;&gt; CLIO. The carboxydextran-coated SPIO uptake by endothelial cells is reduced by colchicine (50%). Conversely, cytochalasin B down-regulates the endocytosis of citrate-coated particle. Our data imply that the major mechanism of uptake would be pinocytosis for the VSOP and phagocytosis for the carboxydextran-coated particle CMD. The different surface coating can influence not only the quantity of the internalization, but also the pathway of internalization. CLIO linked to CD40 antibodies or to CD62E antibodies bound significantly better than IgG-linked CLIO. This was true especially for the anti-CD40-CLIO constructs where fluorescence increased two fold. Comparable results were observed with anti-CD62E-CLIO constructs; however, increase in fluorescence was higher than with CD40 binding; it increased on 3.9-fold (median) and 4.5-fold (mean). In conclusions, the binding of antibody-conjugated CLIO to the antigen-expressing cells was specific, with an affinity similar to that of the free antibody. Thus, it seems feasible to use antibody linked SPIOs for molecular imaging.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Schillaci, O., L. Travascio, C. Bruni, G. Bazzocchi, A. Testa, F. G. Garaci, M. Melis, R. Floris e G. Simonetti. "Molecular Imaging and Magnetic Resonance Imaging in Early Diagnosis of Alzheimer's Disease". Neuroradiology Journal 21, n.º 6 (dezembro de 2008): 755–71. http://dx.doi.org/10.1177/197140090802100603.

Texto completo da fonte
Resumo:
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia in the elderly. Magnetic resonance (MR) or computed tomography (CT) imaging is recommended for routine evaluation of dementias. The development of molecular imaging agents and the new techniques of MR for AD are critically important for early diagnosis, neuropathogenesis studies and assessing treatment efficacy in AD. Neuroimaging using nuclear medicine techniques such as SPECT, PET and MR spectroscopy has the potential to characterize the biomarkers for Alzheimer's disease. The present review summarizes the results of radionuclide imaging and MR imaging in AD.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Koretsky, Alan P., e Afonso C. Silva. "Manganese-enhanced magnetic resonance imaging (MEMRI)". NMR in Biomedicine 17, n.º 8 (novembro de 2004): 527–31. http://dx.doi.org/10.1002/nbm.940.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Li, Zhiming, Jihong Sun e Xiaoming Yang. "Recent Advances in Molecular Magnetic Resonance Imaging of Liver Fibrosis". BioMed Research International 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/595467.

Texto completo da fonte
Resumo:
Liver fibrosis is a life-threatening disease with high morbidity and mortality owing to its diverse causes. Liver biopsy, as the current gold standard for diagnosing and staging liver fibrosis, has a number of limitations, including sample variability, relatively high cost, an invasive nature, and the potential of complications. Most importantly, in clinical practice, patients often reject additional liver biopsies after initiating treatment despite their being necessary for long-term follow-up. To resolve these problems, a number of different noninvasive imaging-based methods have been developed for accurate diagnosis of liver fibrosis. However, these techniques only reflect morphological or perfusion-related alterations in the liver, and thus they are generally only useful for the diagnosis of late-stage liver fibrosis (liver cirrhosis), which is already characterized by “irreversible” anatomic and hemodynamic changes. Thus, it is essential that new approaches are developed for accurately diagnosing early-stage liver fibrosis as at this stage the disease may be “reversed” by active treatment. The development of molecular MR imaging technology has potential in this regard, as it facilitates noninvasive, target-specific imaging of liver fibrosis. We provide an overview of recent advances in molecular MR imaging for the diagnosis and staging of liver fibrosis and we compare novel technologies with conventional MR imaging techniques.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Zu, Guangyue, Ye Kuang, Jingjin Dong, Yi Cao, Tingting Zhang, Min Liu, Liqiang Luo e Renjun Pei. "Gadolinium(III)-based Polymeric Magnetic Resonance Imaging Agents for Tumor Imaging". Current Medicinal Chemistry 25, n.º 25 (30 de agosto de 2018): 2910–37. http://dx.doi.org/10.2174/0929867324666170314121946.

Texto completo da fonte
Resumo:
Contrast agents (CAs) are widely used to improve the signal-noise ratio in the magnetic resonance imaging (MRI) examinations. The majority of MRI CAs used in clinic are gadolinium( III) (Gd(III)) chelates with low molecular weight. Compared with these small-molecule CAs, Gd(III)-based polymeric magnetic resonance imaging agents (i.e. macromolecular contrast agents, mCAs), prepared by conjugating small-molecule Gd(III) chelates onto macromolecules, possess high relaxivity and relative long blood circulation time, which are favorable for MRI examinations. In last decades, increasing attention was paid to the design of mCAs with various structures, and further evaluation of the MRI performance both in vitro and in vivo. Herein, we focus on the recent progress of mCAs, including structures, properties and applications. Meanwhile, this review also highlights the emerging MRI mCAs with smart response and multi-function: tumor microenvironment- stimulated MRI, multi-mode imaging and MRI-based theranostics.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Bendahan, D., P. J. Cozzone e B. Giannesini. "Functional investigations of exercising muscle: a noninvasive magnetic resonance spectroscopy-magnetic resonance imaging approach". Cellular and Molecular Life Sciences (CMLS) 61, n.º 9 (1 de abril de 2004): 1001–15. http://dx.doi.org/10.1007/s00018-004-3345-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Amoroso, Angelo J., e Simon J. A. Pope. "Using lanthanide ions in molecular bioimaging". Chemical Society Reviews 44, n.º 14 (2015): 4723–42. http://dx.doi.org/10.1039/c4cs00293h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Kurhanewicz, John, Mark G. Swanson, Sarah J. Nelson e Daniel B. Vigneron. "Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer". Journal of Magnetic Resonance Imaging 16, n.º 4 (25 de setembro de 2002): 451–63. http://dx.doi.org/10.1002/jmri.10172.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Briley-Saebo, Karen C., Willem J. M. Mulder, Venkatesh Mani, Fabien Hyafil, Vardan Amirbekian, Juan Gilberto S. Aguinaldo, Edward A. Fisher e Zahi A. Fayad. "Magnetic resonance imaging of vulnerable atherosclerotic plaques: Current imaging strategies and molecular imaging probes". Journal of Magnetic Resonance Imaging 26, n.º 3 (2007): 460–79. http://dx.doi.org/10.1002/jmri.20989.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

McIntosh, Laura M., Ross E. Baker e Judy E. Anderson. "Magnetic resonance imaging of regenerating and dystrophic mouse muscle". Biochemistry and Cell Biology 76, n.º 2-3 (1 de maio de 1998): 532–41. http://dx.doi.org/10.1139/o98-033.

Texto completo da fonte
Resumo:
Magnetic resonance imaging allows serial visualization of living muscle. Clinically magnetic resonance imaging would be the first step in selecting a region of interest for assessment of muscle disease state and treatment effects by magnetic resonance spectroscopy. In this study, magnetic resonance imaging was used to follow dystrophy and regeneration in the mdx mouse, a genetic homologue to human Duchenne muscular dystrophy. It was hypothesized that images would distinguish normal control from mdx muscle and that regenerating areas (spontaneous and after an imposed injury) would be evident and evolve over time. T2-weighted images of hind-limb muscles were obtained on anaesthetized mice in a horizontal bore 7.1-T experimental magnet. Magnetic resonance images of mdx muscle appeared heterogeneous in comparison to homogeneous images of control muscle. Foci of high intensity in mdx images corresponded to dystrophic lesions observed in the histologic sections of the same muscles. In addition, it was possible to follow chronologically the extent of injury and repair after an imposed crush injury to mdx muscle. These results should make it possible to obtain meaningful magnetic resonance spectra from particular regions of interest in muscle as viewed in magnetic resonance images (i.e., regenerating, degenerating, normal muscle) acquired during neuromuscular diseases and treatment regimens.Key words: MRI, MRS, spectroscopy, muscular dystrophy, muscle regeneration, mdx mouse.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

BOYES, STEPHEN G., MISTY D. ROWE, NATALIE J. SERKOVA, FERNANDO J. KIM, JAMES R. LAMBERT e PRIYA N. WERAHERA. "POLYMER-MODIFIED GADOLINIUM NANOPARTICLES FOR TARGETED MAGNETIC RESONANCE IMAGING AND THERAPY". Nano LIFE 01, n.º 03n04 (setembro de 2010): 263–75. http://dx.doi.org/10.1142/s1793984410000250.

Texto completo da fonte
Resumo:
Functional imaging is a novel area in radiological sciences and allows for the non-invasive assessment and visualization of specific targets such as gene and protein expression, metabolic rates, and drug delivery in intact living subjects. As such, the field of molecular imaging has been defined as the non-invasive, quantitative, and repetitive imaging of biomolecules and biological processes in living organisms. For example, cancer cells may be genetically altered to attract molecules that alter the magnetic susceptibility, thereby permitting their identification by magnetic resonance imaging. These contrast agents and/or molecular reporters are seen as essential to the task of molecular medicine to increase both sensitivity and specificity of imaging. Therefore, there are five general principles which need to be fulfilled in order to conduct a successful in vivo molecular imaging study: (1) selection of appropriate cellular and subcellular targets; (2) development of suitable in vivo affinity ligands (molecular probes); (3) delivery of these probes to the target organ; (4) amplification strategies able to detect minimal target concentrations; and (5) development of imaging systems with high resolution. Although there has been a wide range of routes taken to incorporate both imaging agents and a disease-targeting moiety into diagnostic devices, arguably the most interesting of these routes employs the use of nanoparticles. Nanoscale diagnostic systems that incorporate molecular targeting agents and diagnostic imaging capabilities are emerging as the next-generation imaging agents and have the potential to dramatically improve the outcome of the imaging, diagnosis, and treatment of a wide range of diseases. The present review addresses chemical aspects in development of molecular probes based upon gadolinium nanoparticles and their potential role in translational clinical imaging and therapy.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Malatesta, Manuela. "Molecular Imaging in Nanomedical Research 2.0". International Journal of Molecular Sciences 23, n.º 21 (27 de outubro de 2022): 13011. http://dx.doi.org/10.3390/ijms232113011.

Texto completo da fonte
Resumo:
Over the last two decades, imaging techniques have become irreplaceable tools in nanotechnology: electron microscopy techniques are routinely used to observe the structural features of newly manufactured nanoconstructs, while light and electron microscopy, magnetic resonance imaging, optical imaging, positron emission tomography, and ultrasound imaging allow dynamic monitoring of the biodistribution, targeting and clearance of nanoparticulates in living systems, either for the whole organism or at the level of single cells, tissues and organs [...]
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia