Literatura científica selecionada sobre o tema "Molecular magnetic resonance imaging"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Molecular magnetic resonance imaging".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Molecular magnetic resonance imaging"
Modo, Mike, e Steve C. R. Williams. "Molecular Imaging by Magnetic Resonance Imaging". Rivista di Neuroradiologia 16, n.º 2_suppl_part2 (setembro de 2003): 23–27. http://dx.doi.org/10.1177/1971400903016sp207.
Texto completo da fonteSosnovik, David E. "Molecular Imaging in Cardiovascular Magnetic Resonance Imaging". Topics in Magnetic Resonance Imaging 19, n.º 1 (fevereiro de 2008): 59–68. http://dx.doi.org/10.1097/rmr.0b013e318176c57b.
Texto completo da fonteTerreno, Enzo, Daniela Delli Castelli, Alessandra Viale e Silvio Aime. "Challenges for Molecular Magnetic Resonance Imaging". Chemical Reviews 110, n.º 5 (12 de maio de 2010): 3019–42. http://dx.doi.org/10.1021/cr100025t.
Texto completo da fonteLANZA, G., P. WINTER, S. CARUTHERS, A. MORAWSKI, A. SCHMIEDER, K. CROWDER e S. WICKLINE. "Magnetic resonance molecular imaging with nanoparticles". Journal of Nuclear Cardiology 11, n.º 6 (dezembro de 2004): 733–43. http://dx.doi.org/10.1016/j.nuclcard.2004.09.002.
Texto completo da fonteCurtis, R. J. "Magnetic resonance imaging." Annals of the Rheumatic Diseases 50, n.º 1 (1 de janeiro de 1991): 66. http://dx.doi.org/10.1136/ard.50.1.66-c.
Texto completo da fonteSosnovik, David E., Matthias Nahrendorf e Ralph Weissleder. "Molecular Magnetic Resonance Imaging in Cardiovascular Medicine". Circulation 115, n.º 15 (17 de abril de 2007): 2076–86. http://dx.doi.org/10.1161/circulationaha.106.658930.
Texto completo da fontePeterson, Eric C., e Louis J. Kim. "Magnetic Resonance Imaging at the Molecular Level". World Neurosurgery 73, n.º 6 (junho de 2010): 604–5. http://dx.doi.org/10.1016/j.wneu.2010.06.044.
Texto completo da fonteWinter, Patrick M., e Michael D. Taylor. "Magnetic Resonance Molecular Imaging of Plaque Angiogenesis". Current Cardiovascular Imaging Reports 5, n.º 1 (3 de janeiro de 2012): 36–44. http://dx.doi.org/10.1007/s12410-011-9121-5.
Texto completo da fonteRothwell, William P. "Nuclear magnetic resonance imaging". Applied Optics 24, n.º 23 (1 de dezembro de 1985): 3958. http://dx.doi.org/10.1364/ao.24.003958.
Texto completo da fonteGoldman, M. "Nuclear Magnetic Resonance Imaging". Physica Scripta T19B (1 de janeiro de 1987): 476–80. http://dx.doi.org/10.1088/0031-8949/1987/t19b/025.
Texto completo da fonteTeses / dissertações sobre o assunto "Molecular magnetic resonance imaging"
Zhu, Bo Ph D. Massachusetts Institute of Technology. "Acoustical-molecular techniques for magnetic resonance imaging". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103499.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references.
Magnetic resonance imaging (MRI) is a remarkably flexible diagnostic platform due to the variety of clinically relevant physical, chemical, and biological phenomena it can detect. In addition to the host of endogenous contrast mechanisms available, MRI functionality can be further extended by incorporating exogenous factors to attain sensitivity to new classes of indicators. Molecular imaging with targeted injectable contrast agents and MR elastography with externally delivered acoustic vibrations are two such advancements with increasing clinical significance. Conventionally employed separately, this work explores how exogenous components can interact cooperatively in imaging disease and may be combined to more accurately stage disease progression and generate novel mechanisms of MR contrast, using contrast agents and acoustic stimulation as model systems. We imaged hepatic fibrosis in a rat model and found that collagen-binding paramagnetic contrast agents and shear wave MR elastography had partially uncorrelated staging abilities, due to the disease condition's differential timing of collagen production and its stiff cross-linking. This complementary feature enabled us to form a composite multivariate model incorporating both methods which exhibited superior diagnostic staging over all stages of fibrosis progression. We then integrated acoustics and molecular-targeting agents at a deeper level in the form of a novel contrast mechanism, Acoustically Induced Rotary Saturation (AIRS), which switches "on" and "off" the image contrast due to the agents by adjusting the resonance of the spin-lock condition. This contrast modulation ability provides unprecedented clarity in identifying contrast agent presence as well as sensitive and quantitative statistical measurements via rapidly modulated block design experiments. Finally, we extend the AIRS method and show preliminary results for Saturation Harmonic Induced Rotary Saturation (SHIRS), which detects the second harmonic time-oscillation of iron oxide nanoparticles' magnetization in response to an oscillating applied field around B0. We also illustrate an exploratory method of selectively imaging iron oxide agents by diffusion kurtosis measures of freely diffusing water in solutions of magnetic nanoparticles.
by Bo Zhu.
Ph. D. in Biomedical Engineering
Zurkiya, Omar. "Magnetic Resonance Molecular Imaging Using Iron Oxide Nanoparticles". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/19848.
Texto completo da fonteDuce, Suzanne Louise. "Nuclear magnetic resonance imaging and spectroscopy of food". Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240194.
Texto completo da fonteGallagher, F. A. "Molecular imaging of tumours using dynamic nuclear polarization and magnetic resonance imaging". Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599277.
Texto completo da fonteGAMBINO, GIUSEPPE. "High-relaxivity systems and molecular imaging probes for Magnetic Resonance Imaging applications". Doctoral thesis, Università del Piemonte Orientale, 2014. http://hdl.handle.net/11579/46171.
Texto completo da fonteChow, Mei-kwan April, e 周美君. "Cellular, molecular and metabolic magnetic resonance imaging: techniques and applications". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44901148.
Texto completo da fonteFan, Shujuan, e 樊淑娟. "In vivo cellular and molecular magnetic resonance imaging of brain functions and injuries". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50491489.
Texto completo da fonteReynolds, Peter Robert. "Magnetic resonance imaging of cellular and molecular events in inflammation". Thesis, Imperial College London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487305.
Texto completo da fonteLee, Yik-hin, e 李易軒. "Molecular and cellular investigation of rodent brains by magnetic resonance imaging". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49618118.
Texto completo da fontepublished_or_final_version
Electrical and Electronic Engineering
Master
Master of Philosophy
Jugniot, Natacha. "Molecular imaging of serine protease activity-driven pathologies by magnetic resonance". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0141/document.
Texto completo da fonteThis work focuses on substrate-based probes for proteolysis monitoring by Electron Paramagnetic Resonance spectroscopy (EPR) and for in vivo imaging by Overhauser-enhanced Magnetic Resonance (OMRI). More precisely, this work investigates for the first time a family of MRI agents named “line-shifting nitroxide” specific for proteolytic activities. Proteolytic action results in a shift of 5 G in EPR hyperfine coupling constants allowing individual quantification of substrate and product species by EPR and selective excitation by OMRI. Three substrates were worked out, showing enzymatic specificity for neutrophil elastase (MeO-Suc-Ala-Ala-Pro-Val-Nitroxide & Suc-Ala-Ala-Pro-Val-Nitroxide), and for Chymotrypsin/Cathepsin G (Suc-Ala-Ala-Pro-Phe-Nitroxide). Enzymatic constants were remarkably good with globally Km = 28 ± 25 µM and kcat = 19 ± 3 s-1. Ex vivo, the use of NE substrates in OMRI revealed a high contrast in bronchoalveolar lavages of mice under inflammatory stimulus. MRI signal enhancements correlate with the severity of inflammation. Irradiation at the RPE frequency of 5425.6 MHz provided access to the bio-distribution of substrates in vivo and could thus serve as a diagnostic tool. The medium-term perspectives of this work are based on the development of OMRI with very low magnetic fields for human application
Livros sobre o assunto "Molecular magnetic resonance imaging"
Awojoyogbe, Bamidele O., e Michael O. Dada. Digital Molecular Magnetic Resonance Imaging. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-6370-2.
Texto completo da fonteModo, Michel Mathias Jeannot Joseph. e Bulte Jeff W. M, eds. Molecular and cellular MR imaging. Boca Raton: CRC Press, 2007.
Encontre o texto completo da fonteEdmund, Kim E., e Jackson E. F. 1961-, eds. Molecular imaging in oncology: PET, MRI, and MRS. Berlin: Springer, 1999.
Encontre o texto completo da fonteDada, Michael O., e Bamidele O. Awojoyogbe. Computational Molecular Magnetic Resonance Imaging for Neuro-oncology. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76728-0.
Texto completo da fonteS, Suri Jasjit, ed. Plaque imaging: Pixel to molecular level. Amsterdam: IOS Press, 2005.
Encontre o texto completo da fontePietro, Carretta, e Lascialfari Alessandra, eds. NMR-MRI, þSR and Mössbauer spectroscopies in molecular magnets. Milano: Springer, 2007.
Encontre o texto completo da fonteBerliner, Lawrence J. NMR of Paramagnetic Molecules. Boston, MA: Springer US, 1993.
Encontre o texto completo da fontePrasad, Pottumarthi V., ed. Magnetic Resonance Imaging. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1385/1597450103.
Texto completo da fonteZuurbier, Ria, Johan Nahuis, Sija Geers-van Gemeren, José Dol-Jansen e Tom Dam, eds. Magnetic Resonance Imaging. Houten: Bohn Stafleu van Loghum, 2017. http://dx.doi.org/10.1007/978-90-368-1934-3.
Texto completo da fonteSigal, Robert, D. Doyon, Ph Halimi e H. Atlan. Magnetic Resonance Imaging. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73037-5.
Texto completo da fonteCapítulos de livros sobre o assunto "Molecular magnetic resonance imaging"
Botnar, René M., W. Yong Kim, Elmar Spuentrup, Tim Leiner, George Katsimaglis, Michael T. Johnstone, Matthias Stuber e Warren J. Manning. "Magnetic resonance imaging of atherosclerosis: classical and molecular imaging". In Cardiovascular Magnetic Resonance, 243–55. Heidelberg: Steinkopff, 2004. http://dx.doi.org/10.1007/978-3-7985-1932-9_24.
Texto completo da fonteBurtea, Carmen, Sophie Laurent, Luce Vander Elst e Robert N. Muller. "Contrast Agents: Magnetic Resonance". In Molecular Imaging I, 135–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72718-7_7.
Texto completo da fonteSchaeffter, Tobias, e Hannes Dahnke. "Magnetic Resonance Imaging and Spectroscopy". In Molecular Imaging I, 75–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72718-7_4.
Texto completo da fonteNeubauer, Anne Morawski, Patrick Winter, Shelton Caruthers, Gregory Lanza e Samuel A. Wickline. "Magnetic Resonance Molecular Imaging and Targeted Therapeutics". In Cardiovascular Magnetic Resonance Imaging, 649–72. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-306-6_29.
Texto completo da fonteChirizzi, Cristina, Valentina Dichiarante, Pierangelo Metrangolo e Francesca Baldelli Bombelli. "Multibranched Superfluorinated Molecular Probes for 19F MRI". In Fluorine Magnetic Resonance Imaging, 61–82. New York: Jenny Stanford Publishing, 2024. http://dx.doi.org/10.1201/9781003530046-3.
Texto completo da fonteJackson, Edward F. "Principles of Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy". In Targeted Molecular Imaging in Oncology, 30–61. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3505-5_4.
Texto completo da fonteGauberti, Maxime, Antoine P. Fournier, Denis Vivien e Sara Martinez de Lizarrondo. "Molecular Magnetic Resonance Imaging (mMRI)". In Preclinical MRI, 315–27. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7531-0_19.
Texto completo da fonteKluza, Ewelina, Gustav J. Strijkers e Klaas Nicolay. "Multifunctional Magnetic Resonance Imaging Probes". In Molecular Imaging in Oncology, 151–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-10853-2_5.
Texto completo da fonteBiegger, Philipp, Mark E. Ladd e Dorde Komljenovic. "Multifunctional Magnetic Resonance Imaging Probes". In Molecular Imaging in Oncology, 189–226. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42618-7_6.
Texto completo da fonteBoretius, Susann, e Jens Frahm. "Manganese-Enhanced Magnetic Resonance Imaging". In Methods in Molecular Biology, 531–68. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-219-9_28.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Molecular magnetic resonance imaging"
Hengerer, A. "Molecular Magnetic Resonance Imaging". In 2nd International University of Malaya Research Imaging Symposium (UMRIS) 2005: Fundamentals of Molecular Imaging. Kuala Lumpur, Malaysia: Department of Biomedical Imaging, University of Malaya, 2005. http://dx.doi.org/10.2349/biij.1.1.e7-53.
Texto completo da fonteBarker, Alex J., Brant Cage, Stephen Russek, Ruchira Garg, Robin Shandas e Conrad R. Stoldt. "Tailored Nanoscale Contrast Agents for Magnetic Resonance Imaging". In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81503.
Texto completo da fonteGoyal, Sachin, Can Zhao, Amod Jog, Jerry L. Prince e Aaron Carass. "Improving self super resolution in magnetic resonance images". In Biomedical Applications in Molecular, Structural, and Functional Imaging, editado por Barjor Gimi e Andrzej Krol. SPIE, 2018. http://dx.doi.org/10.1117/12.2295366.
Texto completo da fonteLei, Yang, Bing Ji, Tian Liu, Walter J. Curran, Hui Mao e Xiaofeng Yang. "Deep learning-based denoising for magnetic resonance spectroscopy signals". In Biomedical Applications in Molecular, Structural, and Functional Imaging, editado por Barjor S. Gimi e Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2580988.
Texto completo da fonteChang, Chih-Wei, Matt Goette, Nadja Kadom, Yinan Wang, Jacob Wynne, Tonghe Wang, Tian Liu et al. "Quantification of radiation damage for proton craniospinal irradiation using magnetic resonance imaging". In Biomedical Applications in Molecular, Structural, and Functional Imaging, editado por Barjor S. Gimi e Andrzej Krol. SPIE, 2023. http://dx.doi.org/10.1117/12.2653665.
Texto completo da fonteMatheson, Alexander M., Grace Parraga e Ian A. Cunningham. "A linear systems description of multi-compartment pulmonary 129Xe magnetic resonance imaging methods". In Biomedical Applications in Molecular, Structural, and Functional Imaging, editado por Barjor S. Gimi e Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2580947.
Texto completo da fonteJeong, Jiwoong J., Yang Lei, Karen Xu, Tian Liu, Hyunsuk Shim, Walter J. Curran, Hui-Kuo Shu e Xiaofeng Yang. "Deep learning-based brain tumor bed segmentation for dynamic magnetic resonance perfusion imaging". In Biomedical Applications in Molecular, Structural, and Functional Imaging, editado por Barjor S. Gimi e Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2580792.
Texto completo da fonteStuker, Florian, Christof Baltes, Katerina Dikaiou, Divya Vats, Lucio Carrara, Edoardo Charbon, Jorge Ripoll e Markus Rudin. "A Novel Hybrid Imaging System for Simultaneous Fluorescence Molecular Tomography and Magnetic Resonance Imaging". In Biomedical Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/biomed.2010.btud1.
Texto completo da fontePereira, Danilo R., Larissa Ganaha, Simone Appenzeller e Leticia Rittner. "Open-source toolbox for analysis and spectra quality control of magnetic resonance spectroscopic imaging". In Biomedical Applications in Molecular, Structural, and Functional Imaging, editado por Barjor S. Gimi e Andrzej Krol. SPIE, 2021. http://dx.doi.org/10.1117/12.2582186.
Texto completo da fonteMoreno, Ramon A., Marina F. S. de Sá Rebelo, Talles Carvalho, Antonildes N. Assunção, Roberto N. Dantas, Renata do Val, Angela S. Marin, Adriano Bordignom, Cesar H. Nomura e Marco A. Gutierrez. "A combined deep-learning approach to fully automatic left ventricle segmentation in cardiac magnetic resonance imaging". In Biomedical Applications in Molecular, Structural, and Functional Imaging, editado por Barjor Gimi e Andrzej Krol. SPIE, 2019. http://dx.doi.org/10.1117/12.2512895.
Texto completo da fonteRelatórios de organizações sobre o assunto "Molecular magnetic resonance imaging"
Bar-Shir, Amnon. Novel molecular architectures for “multicolor” magnetic resonance imaging. The Israel Chemical Society, janeiro de 2023. http://dx.doi.org/10.51167/ice000017.
Texto completo da fonteRussek, Stephen E. Magnetic Resonance Imaging Biomarker Calibration Service:. Gaithersburg, MD: National Institute of Standards and Technology, 2022. http://dx.doi.org/10.6028/nist.sp.250-100.
Texto completo da fonteSchweizer, M. Developments in boron magnetic resonance imaging (MRI). Office of Scientific and Technical Information (OSTI), novembro de 1995. http://dx.doi.org/10.2172/421332.
Texto completo da fonteSchmidt, D. M., e M. A. Espy. Low-field magnetic resonance imaging of gases. Office of Scientific and Technical Information (OSTI), novembro de 1998. http://dx.doi.org/10.2172/674672.
Texto completo da fonteBronskill, Michael J., Paul L. Carson, Steve Einstein, Michael Koshinen, Margit Lassen, Seong Ki Mun, William Pavlicek et al. Site Planning for Magnetic Resonance Imaging Systems. AAPM, 1986. http://dx.doi.org/10.37206/19.
Texto completo da fonteBudakian, Raffi. Nanometer-Scale Force Detected Nuclear Magnetic Resonance Imaging. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2013. http://dx.doi.org/10.21236/ada591583.
Texto completo da fonteHaslam, Philip. Multiparametric magnetic resonance imaging of the prostate gland. BJUI Knowledge, março de 2021. http://dx.doi.org/10.18591/bjuik.0731.
Texto completo da fonteHaslam, Philip. Multiparametric magnetic resonance imaging of the prostate gland. BJUI knowledge, março de 2021. http://dx.doi.org/10.18591/bjuik.0159.v2.
Texto completo da fonteSchmidt, D. M., J. S. George, S. I. Penttila e A. Caprihan. Nuclear magnetic resonance imaging with hyper-polarized noble gases. Office of Scientific and Technical Information (OSTI), outubro de 1997. http://dx.doi.org/10.2172/534499.
Texto completo da fonteBotto, R. E., e G. D. Cody. Magnetic resonance imaging of solvent transport in polymer networks. Office of Scientific and Technical Information (OSTI), fevereiro de 1995. http://dx.doi.org/10.2172/26588.
Texto completo da fonte