Artigos de revistas sobre o tema "Molecular dynamics"

Siga este link para ver outros tipos de publicações sobre o tema: Molecular dynamics.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Molecular dynamics".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Gough, Craig A., Takashi Gojobori e Tadashi Imanishi. "1P563 Consistent dynamic phenomena in amyloidogenic forms of transthyretin : a molecular dynamics study(27. Molecular dynamics simulation,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)". Seibutsu Butsuri 46, supplement2 (2006): S287. http://dx.doi.org/10.2142/biophys.46.s287_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Biyani, Manish, T. Aoyama e K. Nishigaki. "1M1330 Solution structure dynamics of single-stranded oligonucleotides : Experiments and molecular dynamics." Seibutsu Butsuri 42, supplement2 (2002): S76. http://dx.doi.org/10.2142/biophys.42.s76_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Okumura, Hisashi, Satoru G. Itoh e Yuko Okamoto. "1P585 Explicit Symplectic Molecular Dynamics Simulation for Rigid-Body Molecules in the Canonical Ensemble(27. Molecular dynamics simulation,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)". Seibutsu Butsuri 46, supplement2 (2006): S293. http://dx.doi.org/10.2142/biophys.46.s293_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Sugiyama, Ayumu, Tetsunori Yamamoto, Hidemi Nagao, Keigo Nishikawa, Nobutaka Numoto, Kunio Miki e Yoshihiro Fukumori. "1P567 Molecular dynamics study of dynamical structure stability of giant hemoglobin from Oligobrachia mashikoi(27. Molecular dynamics simulation,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)". Seibutsu Butsuri 46, supplement2 (2006): S288. http://dx.doi.org/10.2142/biophys.46.s288_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Slavgorodska, Maria, e Alexander Kyrychenko. "Structure and Dynamics of Pyrene-Labeled Poly(acrylic acid): Molecular Dynamics Simulation Study". Chemistry & Chemical Technology 14, n.º 1 (20 de fevereiro de 2020): 76–80. http://dx.doi.org/10.23939/chcht14.01.076.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Davies, Matt. "Molecular dynamics". Biochemist 26, n.º 4 (1 de agosto de 2004): 53–54. http://dx.doi.org/10.1042/bio02604053.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Bergstra, J. A., e I. Bethke. "Molecular dynamics". Journal of Logic and Algebraic Programming 51, n.º 2 (junho de 2002): 193–214. http://dx.doi.org/10.1016/s1567-8326(02)00021-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Goodfellow, Julia M., e Mark A. Williams. "Molecular dynamics". Current Biology 2, n.º 5 (maio de 1992): 257–58. http://dx.doi.org/10.1016/0960-9822(92)90373-i.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Goodfellow, Julia M., e Mark A. Williams. "Molecular dynamics". Current Opinion in Structural Biology 2, n.º 2 (abril de 1992): 211–16. http://dx.doi.org/10.1016/0959-440x(92)90148-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Alder, Berni J. "Slow dynamics by molecular dynamics". Physica A: Statistical Mechanics and its Applications 315, n.º 1-2 (novembro de 2002): 1–4. http://dx.doi.org/10.1016/s0378-4371(02)01220-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Williams, Sarah L., César Augusto F. de Oliveira e J. Andrew McCammon. "Coupling Constant pH Molecular Dynamics with Accelerated Molecular Dynamics". Journal of Chemical Theory and Computation 6, n.º 2 (14 de janeiro de 2010): 560–68. http://dx.doi.org/10.1021/ct9005294.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Righini, R. "Molecular dynamics and lattice dynamics calculations in molecular crystals". Physica B+C 131, n.º 1-3 (agosto de 1985): 234–48. http://dx.doi.org/10.1016/0378-4363(85)90156-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Phares, Denis J., e Arun R. Srinivasa. "Molecular Dynamics with Molecular Temperature". Journal of Physical Chemistry A 108, n.º 29 (julho de 2004): 6100–6108. http://dx.doi.org/10.1021/jp037910y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Wagner, Geri, Eirik Flekkøy, Jens Feder e Torstein Jøssang. "Coupling molecular dynamics and continuum dynamics". Computer Physics Communications 147, n.º 1-2 (agosto de 2002): 670–73. http://dx.doi.org/10.1016/s0010-4655(02)00371-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Erban, Radek. "From molecular dynamics to Brownian dynamics". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, n.º 2167 (8 de julho de 2014): 20140036. http://dx.doi.org/10.1098/rspa.2014.0036.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Three coarse-grained molecular dynamics (MD) models are investigated with the aim of developing and analysing multi-scale methods which use MD simulations in parts of the computational domain and (less detailed) Brownian dynamics (BD) simulations in the remainder of the domain. The first MD model is formulated in one spatial dimension. It is based on elastic collisions of heavy molecules (e.g. proteins) with light point particles (e.g. water molecules). Two three-dimensional MD models are then investigated. The obtained results are applied to a simplified model of protein binding to receptors on the cellular membrane. It is shown that modern BD simulators of intracellular processes can be used in the bulk and accurately coupled with a (more detailed) MD model of protein binding which is used close to the membrane.
16

Brooks, Charles L., David A. Case, Steve Plimpton, Benoît Roux, David van der Spoel e Emad Tajkhorshid. "Classical molecular dynamics". Journal of Chemical Physics 154, n.º 10 (14 de março de 2021): 100401. http://dx.doi.org/10.1063/5.0045455.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

SHINTO, Hiroyuki. "Molecular Dynamics Simulation". Journal of the Japan Society of Colour Material 86, n.º 10 (2013): 380–85. http://dx.doi.org/10.4011/shikizai.86.380.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Hoover. "Nonequilibrium molecular dynamics". Condensed Matter Physics 8, n.º 2 (2005): 247. http://dx.doi.org/10.5488/cmp.8.2.247.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Binder, Kurt, Jürgen Horbach, Walter Kob, Wolfgang Paul e Fathollah Varnik. "Molecular dynamics simulations". Journal of Physics: Condensed Matter 16, n.º 5 (23 de janeiro de 2004): S429—S453. http://dx.doi.org/10.1088/0953-8984/16/5/006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Ashfold, M. N. R., e D. H. Parker. "Imaging molecular dynamics". Phys. Chem. Chem. Phys. 16, n.º 2 (2014): 381–82. http://dx.doi.org/10.1039/c3cp90161k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Thomas, David D. "Molecular dynamics resolved". Nature 321, n.º 6069 (maio de 1986): 539–40. http://dx.doi.org/10.1038/321539a0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

STADLER, BÄRBEL M. R., e PETER F. STADLER. "MOLECULAR REPLICATOR DYNAMICS". Advances in Complex Systems 06, n.º 01 (março de 2003): 47–77. http://dx.doi.org/10.1142/s0219525903000724.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Template-dependent replication at the molecular level is the basis of reproduction in nature. A detailed understanding of the peculiarities of the chemical reaction kinetics associated with replication processes is therefore an indispensible prerequisite for any understanding of evolution at the molecular level. Networks of interacting self-replicating species can give rise to a wealth of different dynamical phenomena, from competitive exclusion to permanent coexistence, from global stability to multi-stability and chaotic dynamics. Nevertheless, there are some general principles that govern their overall behavior. We focus on the question to what extent the dynamics of replication can explain the accumulation of genetic information that eventually leads to the emergence of the first cell and hence the origin of life as we know it. A large class of ligation-based replication systems, which includes the experimentally available model systems for template directed self-replication, is of particular interest because its dynamics bridges the gap between the survival of a single fittest species to the global coexistence of everthing. In this intermediate regime the selection is weak enough to allow the coexistence of genetically unrelated replicators and strong enough to limit the accumulation of disfunctional mutants.
23

Rapaport, D. C. "Interactive molecular dynamics". Physica A: Statistical Mechanics and its Applications 240, n.º 1-2 (junho de 1997): 246–54. http://dx.doi.org/10.1016/s0378-4371(97)00148-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Tidor, Bruce. "Molecular dynamics simulations". Current Biology 7, n.º 9 (setembro de 1997): R525—R527. http://dx.doi.org/10.1016/s0960-9822(06)00269-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Hansson, Tomas, Chris Oostenbrink e WilfredF van Gunsteren. "Molecular dynamics simulations". Current Opinion in Structural Biology 12, n.º 2 (abril de 2002): 190–96. http://dx.doi.org/10.1016/s0959-440x(02)00308-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Matthews, G. Peter. "Molecular dynamics simulator". Journal of Chemical Education 70, n.º 5 (maio de 1993): 387. http://dx.doi.org/10.1021/ed070p387.2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Krienke, Hartmut. "Molecular dynamics simulation". Journal of Molecular Liquids 75, n.º 3 (março de 1998): 271–72. http://dx.doi.org/10.1016/s0167-7322(97)00106-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Bandrauk, André D., Jörn Manz e M. J. J. Vrakking. "Attosecond molecular dynamics". Chemical Physics 366, n.º 1-3 (dezembro de 2009): 1. http://dx.doi.org/10.1016/j.chemphys.2009.10.023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

DUMITRICA, T., e R. JAMES. "Objective molecular dynamics". Journal of the Mechanics and Physics of Solids 55, n.º 10 (outubro de 2007): 2206–36. http://dx.doi.org/10.1016/j.jmps.2007.03.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Mitchell, P. J., e D. Fincham. "Multicomputer molecular dynamics". Future Generation Computer Systems 9, n.º 1 (maio de 1993): 5–10. http://dx.doi.org/10.1016/0167-739x(93)90020-p.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Casavecchia, Piergiorgio, Mark Brouard, Michel Costes, David Nesbitt, Evan Bieske e Scott Kable. "Molecular collision dynamics". Physical Chemistry Chemical Physics 13, n.º 18 (2011): 8073. http://dx.doi.org/10.1039/c1cp90049h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Schroeder, Daniel V. "Interactive molecular dynamics". American Journal of Physics 83, n.º 3 (março de 2015): 210–18. http://dx.doi.org/10.1119/1.4901185.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Straatsma, T. P. "Scalable molecular dynamics". Journal of Physics: Conference Series 16 (1 de janeiro de 2005): 287–99. http://dx.doi.org/10.1088/1742-6596/16/1/040.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Hoffman, Mark B., e Peter V. Coveney. "Lattice Molecular Dynamics". Molecular Simulation 27, n.º 3 (setembro de 2001): 157–68. http://dx.doi.org/10.1080/08927020108023021.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Rapaport, D. C. "Molecular dynamics simulation". Computing in Science & Engineering 1, n.º 1 (1999): 70–71. http://dx.doi.org/10.1109/5992.743625.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

D.P. "Molecular photodissociation dynamics". Journal of Molecular Structure 213 (outubro de 1989): 321. http://dx.doi.org/10.1016/0022-2860(89)85133-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Feldmeier, H. "Fermionic molecular dynamics". Nuclear Physics A 515, n.º 1 (agosto de 1990): 147–72. http://dx.doi.org/10.1016/0375-9474(90)90328-j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Ritchie, Burke. "Quantum molecular dynamics". International Journal of Quantum Chemistry 111, n.º 1 (26 de outubro de 2010): 1–7. http://dx.doi.org/10.1002/qua.22371.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Heermann, Dieter W., Peter Nielaba e Mauro Rovere. "Hybrid molecular dynamics". Computer Physics Communications 60, n.º 3 (outubro de 1990): 311–18. http://dx.doi.org/10.1016/0010-4655(90)90030-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Hoover, Wm G. "Nonequilibrium molecular dynamics". Nuclear Physics A 545, n.º 1-2 (agosto de 1992): 523–36. http://dx.doi.org/10.1016/0375-9474(92)90490-b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Tully, John C. "Nonadiabatic molecular dynamics". International Journal of Quantum Chemistry 40, S25 (1991): 299–309. http://dx.doi.org/10.1002/qua.560400830.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Schulman, Stephen J. "Molecular Photodissociation Dynamics". Journal of Pharmaceutical Sciences 78, n.º 5 (maio de 1989): 435. http://dx.doi.org/10.1002/jps.2600780520.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Braeckmans, Kevin, Dries Vercauteren, Jo Demeester e Stefaan C. De Smedt. "Measuring Molecular Dynamics". Imaging & Microscopy 11, n.º 2 (maio de 2009): 26–28. http://dx.doi.org/10.1002/imic.200990033.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Proctor, Elizabeth A., Feng Ding e Nikolay V. Dokholyan. "Discrete molecular dynamics". WIREs Computational Molecular Science 1, n.º 1 (janeiro de 2011): 80–92. http://dx.doi.org/10.1002/wcms.4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

VASHISHTA, PRIYA, RAJIV K. KALIA, AIICHIRO NAKANO e JIN YU. "MOLECULAR DYNAMICS AND QUANTUM MOLECULAR DYNAMICS SIMULATIONS ON PARALLEL ARCHITECTURES". International Journal of Modern Physics C 05, n.º 02 (abril de 1994): 281–83. http://dx.doi.org/10.1142/s0129183194000325.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Efficient parallel molecular dynamics (MD) algorithm based on the multiple-time-step (MTS) approach is developed. The MTS-MD algorithm is used to study structural correlations in porous silica at densities 2.2 g/cm3 to 1.6 g/cm3. Nature of phonons and effects of hydrostatic pressure in solid C60 is studied using the tight-binding MD method within a unified interaction model which includes intermolecular and intra-molecular interactions.
46

Narumi, Tetsu, Ryutaro Susukita, Toshikazu Ebisuzaki, Geoffrey McNiven e Bruce Elmegreen. "Molecular Dynamics Machine: Special-Purpose Computer for Molecular Dynamics Simulations". Molecular Simulation 21, n.º 5-6 (janeiro de 1999): 401–15. http://dx.doi.org/10.1080/08927029908022078.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Wu, Jian-Bo, Shu-Jia Li, Hong Liu, Hu-Jun Qian e Zhong-Yuan Lu. "Dynamics and reaction kinetics of coarse-grained bulk vitrimers: a molecular dynamics study". Physical Chemistry Chemical Physics 21, n.º 24 (2019): 13258–67. http://dx.doi.org/10.1039/c9cp01766f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
We used the hybrid molecular dynamics–Monte Carlo (MD–MC) algorithm to establish a molecular dynamics model that can accurately reflect bond exchange reactions, and reveal the intrinsic mechanism of the dynamic behavior of the vitrimer system.
48

Anam, Muhammad Syaekhul, e S. Suwardi. "Hydration Structures and Dynamics of Ga3+ Ion Based on Molecular Mechanics Molecular Dynamics Simulation (Classical DM)". Indonesian Journal of Chemistry and Environment 4, n.º 2 (10 de março de 2022): 49–56. http://dx.doi.org/10.21831/ijoce.v4i2.48401.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
The structure and hydration dynamics of Ga3+ ion have been studied using classical Molecular Dynamics (MD) simulations. The data collection procedure includes determining the best base set, constructing 2-body and 3-body potential equations, classical molecular dynamics simulations based on 2-body potentials, classical molecular dynamics simulations based on 2-body + 3 potential-body. The trajectory file data analysis was done to obtain structural properties parameters such as RDF, CND, ADF, and dynamic properties, namely the movement of H2O ligands between hydrations shells. The results of the research indicated that the hydration complex structure of Ga(H2O)83+ and Ga(H2O)63+ was observed in molecular dynamics simulations (MM-2 body) and (MM-2 body + 3-body), respectively. The movement of H2O ligands occurs between the first and second shell or vice versa in the MD simulation of MM-2 bodies but does not occur in MD simulations of (MM-2 bodies + MM-3 bodies). Therefore, the water ligands in the first hydrated shell are stable.
49

Sivak, A. B., D. N. Demidov e P. A. Sivak. "DIFFUSION CHARACTERISTICS OF RADIATION DEFECTS IN IRON: MOLECULAR DYNAMICS DATA". Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion 44, n.º 2 (2021): 148–57. http://dx.doi.org/10.21517/0202-3822-2021-44-2-148-157.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Inoue, Yasuhiro, Shinji Matsushita e Taiji Adachi. "BC-JP-6 Molecular dynamics simulations of an actin filament". Proceedings of Mechanical Engineering Congress, Japan 2012 (2012): _BC—JP—6–1—_BC—JP—6–1. http://dx.doi.org/10.1299/jsmemecj.2012._bc-jp-6-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Vá para a bibliografia