Literatura científica selecionada sobre o tema "Module learning with errors"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Module learning with errors".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Module learning with errors"
Carle, Myriam S., Rebecca Visser e Alison B. Flynn. "Evaluating students’ learning gains, strategies, and errors using OrgChem101's module: organic mechanisms—mastering the arrows". Chemistry Education Research and Practice 21, n.º 2 (2020): 582–96. http://dx.doi.org/10.1039/c9rp00274j.
Texto completo da fonteHarahap, Safinatul Hasanah, Airi Rizki Syahputri, Dania Priskilla Hura e Rahel Novita Simanihuruk. "Analysis of Errors in Using Punctuation and Writing in Indonesian in Physics Learning Modules in Middle Schools: Case Study in Semarang City". QISTINA: Jurnal Multidisiplin Indonesia 3, n.º 1 (1 de junho de 2024): 866–71. http://dx.doi.org/10.57235/qistina.v3i1.2450.
Texto completo da fontePak, JuGeon, JooHwa Lee e MyungSuk Lee. "Developing a Learning Data Collection Platform for Learning Analytics in Online Education". Applied Sciences 12, n.º 11 (26 de maio de 2022): 5412. http://dx.doi.org/10.3390/app12115412.
Texto completo da fonteHongli, Chen. "Design and Application of English Grammar Error Correction System Based on Deep Learning". Security and Communication Networks 2021 (23 de novembro de 2021): 1–9. http://dx.doi.org/10.1155/2021/4920461.
Texto completo da fonteJiao, Fengming, Jiao Song, Xin Zhao, Ping Zhao e Ru Wang. "A Spoken English Teaching System Based on Speech Recognition and Machine Learning". International Journal of Emerging Technologies in Learning (iJET) 16, n.º 14 (28 de julho de 2021): 68. http://dx.doi.org/10.3991/ijet.v16i14.24049.
Texto completo da fonteMohammad Shahid, Sunil Gupta e MS. Sofia Pillai. "Machine Learning-Based False Positive Software Vulnerability Analysis". Global Journal of Innovation and Emerging Technology 1, n.º 1 (15 de junho de 2022): 29–35. http://dx.doi.org/10.58260/j.iet.2202.0105.
Texto completo da fonteWang, Binquan, Muhammad Asim, Guoqi Ma e Ming Zhu. "Central Feature Learning for Unsupervised Person Re-identification". International Journal of Pattern Recognition and Artificial Intelligence 35, n.º 08 (5 de março de 2021): 2151007. http://dx.doi.org/10.1142/s0218001421510071.
Texto completo da fonteChen, Chi-Feng, Jian-Rong Chen e Ting-Yu Chen. "Identification of the Angle Errors of the LED Parallel-Light Module in PCB Exposure Device by Using Neural Network Learning Algorithms". Coatings 12, n.º 11 (26 de outubro de 2022): 1619. http://dx.doi.org/10.3390/coatings12111619.
Texto completo da fonteGeha, Rabih, Robert L. Trowbridge, Gurpreet Dhaliwal e Andrew P. J. Olson. "Teaching about diagnostic errors through virtual patient cases: a pilot exploration". Diagnosis 5, n.º 4 (27 de novembro de 2018): 223–27. http://dx.doi.org/10.1515/dx-2018-0023.
Texto completo da fonteJia, Wenjuan, Jiang Zhang e Baocang Wang. "Hardness of Module-LWE with Semiuniform Seeds from Module-NTRU". IET Information Security 2023 (23 de outubro de 2023): 1–16. http://dx.doi.org/10.1049/2023/2969432.
Texto completo da fonteTeses / dissertações sobre o assunto "Module learning with errors"
Jeudy, Corentin. "Design of advanced post-quantum signature schemes". Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS018.
Texto completo da fonteThe transition to post-quantum cryptography has been an enormous effort for cryptographers over the last decade. In the meantime, cryptography for the protection of privacy, aiming at addressing the limitations inherent to basic cryptographic mechanisms in this domain, has also attracted a lot of attention. Nevertheless, despite the success of both individual branches, combining both aspects along with practicality turns out to be very challenging. The goal of this thesis then lies in proposing new constructions for practical post-quantum privacy, and more generally advanced authentication mechanisms. To this end, we first focus on the lower level by studying one of the fundamental mathematical assumptions used in lattice-based cryptography: Module Learning With Errors. We show that it does not get significantly easier when stretching the secret and error distributions. We then turn to optimizing preimage samplers which are used in advanced signature designs. Far from being limited to this use case, we show that it also leads to efficient designs of regular signatures. Finally, we use some of the previous contributions to construct so-called signatures with efficient protocols, a versatile building block in countless advanced applications. We showcase it by giving the first post-quantum anonymous credentials, which we implement to demonstrate a theoretical and practical efficiency
Bootkrajang, Jakramate. "Supervised learning with random labelling errors". Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4487/.
Texto completo da fonteSmith, Natalie T. (Natalie Tamika) 1978. "Interactive spectral analysis learning module". Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8600.
Texto completo da fonteIncludes bibliographical references (leaf 103).
Due to increased demand for interactive learning opportunities for engineering students, an interactive spectral analysis learning module was developed for the course Biomedical Signal and Image Processing (HST582J/6.555J/16.456J). The design of this module is based on the Star Legacy model, a pedagogical framework that promotes the creation of guided learning environments that use applications as the context for focused learning activities. The module is implemented using a combination of traditional teaching methods and web-based components. The web-based components include tutorial questions, text summaries, tables, figures, a glossary, and an interactive demonstration. This module was used in HST582J/6.555J/16.456J during Spring Term 2001. A variety of assessment techniques were employed. Survey results show that students generally found the module useful. Student performance on lab reports showed improved understanding of key concepts relative to previous years. Future efforts should reanalyze other performance data and make suggested modifications to the overall module, the web-based tutorial, and the interactive demo.
by Natalie T. Smith.
M.Eng.
Rosca, Georgiana-Miruna. "On algebraic variants of Learning With Errors". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN063.
Texto completo da fonteLattice-based cryptography relies in great parts on the use of the Learning With Errors (LWE) problemas hardness foundation. This problem is at least as hard as standard worst-case lattice problems, but the primitives based on it usually have big key sizes and slow algorithms. Polynomial Learning With Errors (PLWE), dual Ring Learning With Errors (dual-RLWE) and primal Ring Learning WithErrors (primal-RLWE) are variants of LWE which make use of extra algebraic structures in order to fix the above drawbacks. The PLWE problem is parameterized by a polynomial f, while dual-RLWE andprimal-RLWE are defined using the ring of integers of a number field. These problems, which we call algebraic, also enjoy reductions from worst-case lattice problems, but in their case, the lattices involved belong to diverse restricted classes. In this thesis, we study relationships between algebraic variants of LWE.We first show that for many defining polynomials, there exist (non-uniform) reductions betweendual-RLWE, primal-RLWE and PLWE that incur limited parameter losses. These results could be interpretedas a strong evidence that these problems are qualitatively equivalent.Then we introduce a new algebraic variant of LWE, Middle-Product Learning With Errors (MP-LWE). We show that this problem is at least as hard as PLWE for many defining polynomials f. As a consequence,any cryptographic system based on MP-LWE remains secure as long as one of these PLWE instances remains hard to solve.Finally, we illustrate the cryptographic relevance of MP-LWE by building a public-key encryption scheme and a digital signature scheme that are proved secure under the MP-LWE hardness assumption
Troëng, Thomas. "On errors & adverse outcomes in surgery learning from experience /". Malmö : Dept. of Community Health Sciences and the Dept. of Surgery, Malmö General Hospital, University of Lund, 1992. http://catalog.hathitrust.org/api/volumes/oclc/38946479.html.
Texto completo da fonteSoncini, Annalisa <1992>. "Learning from errors: Psychological, relational, and cultural aspects". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10362/1/Final%20Thesis_Soncini.pdf.
Texto completo da fonteDavid, Iuliana. "Road Traffic Safety Problem Based Learning Module". Thesis, Linköping University, Department of Science and Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-14691.
Texto completo da fonteRoad traffic safety has increasingly become in need of educated road safety professionals, as the number of accidents in the World Health Organization member countries exceeds one million. The profession itself is transitioning from experience based decision making to empirical, theoretical and mathematical based solutions. However, road traffic safety is a multidiscipline, crossing over many fields and requiring a high degree of communication between different institutions. There are very few institutions that provide programs in the field; furthermore, they employ traditional lecture-based teaching methods. The traditional teaching environment does not fulfill the educational needs of future traffic safety professionals due to its rigidity and lack of problem solving exercises.
An alternative method, namely problem based learning, is recommended as an alternative teaching method in this paper. The thesis is constructed in such a way as to develop a complete road traffic safety educational module at graduate and post graduate level.
The theoretical basis on which a road traffic safety module is later built is presented in the first part of the thesis. Major concepts in road traffic safety, as well as problem based learning methods are investigated. In addition, a literature review SWOT analysis based on literature is conducted.The module development consists of establishing the road traffic safety learning goals for each segment in the module, appropriate assessment criteria and group work format. The module contains gradual difficulty level problems, starting from the easiest topic and easiest format (closed ended problem) and ending with the hardest topic and hardest format (open ended problem).
The last section employs the SWOT analysis findings in the theoretical section to develop a SWOT analysis of the road traffic safety module presented in the thesis.
Colombini, Esther Luna. "Module-based learning in autonomous mobile robots". Instituto Tecnológico de Aeronáutica, 2005. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=213.
Texto completo da fonteDi, Orio Giovanni. "Adapter module for self-learning production systems". Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/10402.
Texto completo da fonteThe dissertation presents the work done under the scope of the NP7 Self-Learning project regarding the design and development of the Adapter component as a foundation for the Self-Learning Production Systems (SLPS). This component is responsible to confer additional proprieties to production systems such as lifecycle learning, optimization of process parameters and, above all, adaptation to different production contexts. Therefore, the SLPS will be an evolvable system capable to self-adapt and learn in response to dynamic contextual changes in manufacturing production process in which it operates. The key assumption is that a deeper use of data mining and machine learning techniques to process the huge amount of data generated during the production activities will allow adaptation and enhancement of control and other manufacturing production activities such as energy use optimization and maintenance. In this scenario, the SLPS Adapter acts as a doer and is responsible for dynamically adapting the manufacturing production system parameters according to changing manufacturing production contexts and, most important, according to the history of the manufacturing production process acquired during SLPS run time.To do this, a Learning Module has been also developed and embedded into the SLPS Adapter. The SLPS Learning Module represents the processing unit of the SLPS Adapter and is responsible to deliver Self-learning capabilities relying on data mining and operator’s feedback to up-date the execution of adaptation and context extraction at run time. The designed and implemented SLPS Adapter architecture is assessed and validated into several application scenario provided by three industrial partners to assure industrial relevant self-learning production systems. Experimental results derived by the application of the SLPS prototype into real industrial environment are also presented.
Gould, Isaac Ph D. Massachusetts Institute of Technology. "Syntactic learning from ambiguous evidence : errors and end-states". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101521.
Texto completo da fonteCataloged from PDF version of thesis. "September 2015."
Includes bibliographical references (pages 266-275).
In this thesis I explore the role of ambiguous evidence in first language acquisition by using a probabilistic learner for setting syntactic parameters. As ambiguous evidence is input to the learner that is compatible with multiple grammars or hypotheses, it poses learnability and acquisition challenges because it underdetermines the correct analysis. However, a probabilistic learning model with competing hypotheses can address these challenges by learning from general tendencies regarding the shape of the input, thereby finding the most compatible set of hypotheses, or the grammar with the 'best fit' to the input. This enables the model to resolve the challenge of learning the grammar of a subset language: it can reach such a target end-state by learning from implicit negative evidence. Moreover, ambiguous evidence can provide insight into two phenomena characteristic of language acquisition: variability (both within speakers and across a population) and learning errors. Both phenomena can be accounted for under a model that is attempting to learn a grammar of best fit. Three case studies relating to word order and phrase structure are investigated with simulations of the model. First I show how the model can account for embedded clause verb placement errors in child Swiss German by learning from ambiguous input. I then show how learning from ambiguous input allows the model to account for grammatical variability across speakers with regard to verb movement in Korean. Finally, I show that the model is successfully able to learn the grammar of a subset language with the example of zero-derived causatives in English.
by Isaac Gould.
Ph. D. in Linguistics
Livros sobre o assunto "Module learning with errors"
University of North London. IT Learning Exchange., ed. Microsoft Access 97: Learning module. London: University of North London, 1997.
Encontre o texto completo da fonteUniversity of North London. IT Learning Exchange., ed. Microsoft Excel 97: Learning module. London: University of North London, 1998.
Encontre o texto completo da fonteUniversity of North London. IT Learning Exchange., ed. Microsoft Word 97: Learning module. London: University of North London, 1997.
Encontre o texto completo da fonteUniversity of North London. IT Learning Exchange., ed. Microsoft Access 97: Learning module. London: University of North London, 1997.
Encontre o texto completo da fonteUniversity of North London. IT Learning Exchange., ed. Microsoft Powerpoint 97: Learning module. London: University of North London, 1999.
Encontre o texto completo da fonteUniversity of North London. IT Learning Exchange., ed. Microsoft Access 97: Learning module. London: University of North London, 1997.
Encontre o texto completo da fonteMadonna, Theresa I. Business law: Comprehensive learning module. Indianapolis, IN (3815 River Crossing Pkwy., Suite 260, Indianapolis 46240): College Network, 2004.
Encontre o texto completo da fonteUniversity of North London. IT Learning Exchange., ed. Microsoft Word 97: Learning module. London: University of North London, 1998.
Encontre o texto completo da fonteHuelser, Barbie. Learning by making errors: When and why errors help memory, and the metacognitive illusion that errors are hurtful for learning. [New York, N.Y.?]: [publisher not identified], 2014.
Encontre o texto completo da fonteA, Nguyen Dung, ed. Learning from medical errors: Clinical problems. Oxford: Radcliffe Pub., 2005.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Module learning with errors"
Urretavizcaya, Maite, e M. Felisa Verdejo. "A cooperative system for the interactive debugging of novice programming errors". In Instructional Models in Computer-Based Learning Environments, 421–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02840-7_25.
Texto completo da fontePommellet, Adrien, Daniel Stan e Simon Scatton. "SAT-Based Learning of Computation Tree Logic". In Automated Reasoning, 366–85. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63498-7_22.
Texto completo da fonteLavasa, Eleni, Christos Chadoulos, Athanasios Siouras, Ainhoa Etxabarri Llana, Silvia Rodríguez Del Rey, Theodore Dalamagas e Serafeim Moustakidis. "Toward Explainable Metrology 4.0: Utilizing Explainable AI to Predict the Pointwise Accuracy of Laser Scanning Devices in Industrial Manufacturing". In Artificial Intelligence in Manufacturing, 479–501. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-46452-2_27.
Texto completo da fonteMolnar, Christoph, Timo Freiesleben, Gunnar König, Julia Herbinger, Tim Reisinger, Giuseppe Casalicchio, Marvin N. Wright e Bernd Bischl. "Relating the Partial Dependence Plot and Permutation Feature Importance to the Data Generating Process". In Communications in Computer and Information Science, 456–79. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44064-9_24.
Texto completo da fonteRyckelynck, David, Fabien Casenave e Nissrine Akkari. "Error Estimation". In Manifold Learning, 39–52. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-52764-7_3.
Texto completo da fonteGustafson, Paul. "Partial Learning of Misclassification Parameters". In Handbook of Measurement Error Models, 71–84. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781315101279-4.
Texto completo da fonteBeighton, Christian. "Errors and Learning". In Deleuze and Lifelong Learning, 137–45. London: Palgrave Macmillan UK, 2015. http://dx.doi.org/10.1057/9781137480804_10.
Texto completo da fonteCoker, Cheryl A. "Diagnosing Errors". In Motor Learning and Control for Practitioners, 291–310. Fourth edition. | Abingdon, Oxon ; New York, NY :: Routledge, 2017. http://dx.doi.org/10.4324/9781315185613-11.
Texto completo da fonteCoker, Cheryl A. "Correcting Errors". In Motor Learning and Control for Practitioners, 311–40. Fourth edition. | Abingdon, Oxon ; New York, NY :: Routledge, 2017. http://dx.doi.org/10.4324/9781315185613-12.
Texto completo da fonteCoker, Cheryl A. "Correcting Errors". In Motor Learning and Control for Practitioners, 291–316. 5a ed. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003039716-12.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Module learning with errors"
Jackson, Ryan, Michael Jump e Peter Green. "Towards Gaussian Process Models of Complex Rotorcraft Dynamics". In Vertical Flight Society 74th Annual Forum & Technology Display, 1–11. The Vertical Flight Society, 2018. http://dx.doi.org/10.4050/f-0074-2018-12828.
Texto completo da fonteMoon, Sangook. "A Gaussian Sampler for Ring-Learning-With-Errors Scheme Reusing a Cryptographic Module". In Security, Reliability, and Safety 2015. Science & Engineering Research Support soCiety, 2015. http://dx.doi.org/10.14257/astl.2015.109.02.
Texto completo da fonteZhang, Jiaqiang, Senzhang Wang e Songcan Chen. "Reconstruction Enhanced Multi-View Contrastive Learning for Anomaly Detection on Attributed Networks". In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/330.
Texto completo da fonteOno, Tatsuki, Song Bian e Takashi Sato. "Automatic Parallelism Tuning for Module Learning with Errors Based Post-Quantum Key Exchanges on GPUs". In 2021 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2021. http://dx.doi.org/10.1109/iscas51556.2021.9401575.
Texto completo da fonteXia, Maohao, Chaosheng Song, Yan Wang e Qiyong Yang. "Investigation on the influences of comprehensive errors of alignment on the contact characteristic of small-module spiral bevel gear". In 2021 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE). IEEE, 2021. http://dx.doi.org/10.1109/mlise54096.2021.00052.
Texto completo da fonteJebali, Adel. "French as a second language (L2) and AI: Deep Learning Models to the Rescue of Object Clitics". In 15th International Conference on Applied Human Factors and Ergonomics (AHFE 2024). AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1005406.
Texto completo da fonteYang, Hsuan-Kung, Po-Han Chiang, Min-Fong Hong e Chun-Yi Lee. "Flow-based Intrinsic Curiosity Module". In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/286.
Texto completo da fonteKoert, Dorothea, Guilherme Maeda, Gerhard Neumann e Jan Pcters. "Learning Coupled Forward-Inverse Models with Combined Prediction Errors". In 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018. http://dx.doi.org/10.1109/icra.2018.8460675.
Texto completo da fonteGuo, Quan, Hossein Rajaby Faghihi, Yue Zhang, Andrzej Uszok e Parisa Kordjamshidi. "Inference-Masked Loss for Deep Structured Output Learning". In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/382.
Texto completo da fonteLi, Huiru, Jitesh H. Panchal e Xiaoping Du. "Quantification Model Uncertainty of Label-Free Machine Learning for Multidisciplinary Systems Analysis". In ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/detc2023-112948.
Texto completo da fonteRelatórios de organizações sobre o assunto "Module learning with errors"
Gastelum, Zoe, Laura Matzen, Mallory Stites, Kristin Divis, Breannan Howell, Aaron Jones e Michael Trumbo. Assessing Cognitive Impacts of Errors from Machine Learning and Deep Learning Models: Final Report. Office of Scientific and Technical Information (OSTI), setembro de 2021. http://dx.doi.org/10.2172/1821527.
Texto completo da fonteGunay, Selim, Fan Hu, Khalid Mosalam, Arpit Nema, Jose Restrepo, Adam Zsarnoczay e Jack Baker. Blind Prediction of Shaking Table Tests of a New Bridge Bent Design. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, novembro de 2020. http://dx.doi.org/10.55461/svks9397.
Texto completo da fonteSturm, Andrew. RCT Module 2.03 Counting Errors and Statistics. Office of Scientific and Technical Information (OSTI), outubro de 2023. http://dx.doi.org/10.2172/2202616.
Texto completo da fonteHillmer, Kurt T. RCT: Module 2.03, Counting Errors and Statistics, Course 8768. Office of Scientific and Technical Information (OSTI), abril de 2017. http://dx.doi.org/10.2172/1372827.
Texto completo da fonteBiermann, A. W., K. C. Gilbert, A. Fahmy e B. Koster. On the Errors that Learning Machines Will Make. Revision. Fort Belvoir, VA: Defense Technical Information Center, março de 1991. http://dx.doi.org/10.21236/ada244108.
Texto completo da fontePompeu, Gustavo, e José Luiz Rossi. Real/Dollar Exchange Rate Prediction Combining Machine Learning and Fundamental Models. Inter-American Development Bank, setembro de 2022. http://dx.doi.org/10.18235/0004491.
Texto completo da fonteLamar, Traci A. M. Teaching Critical Color Concepts through an Online Learning Module. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-1915.
Texto completo da fonteHirayama, Yuji. A PROLOG Lexical Phrase Computer Assisted Language Learning Module. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.7173.
Texto completo da fonteKrachunov, Milko, Milena Sokolova, Valeriya Simeonova, Maria Nisheva, Irena Avdjieva e Dimitar Vassilev. Quality of Different Machine Learning Models in Error Discovery for Parallel Genome Sequencing. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, 2018. http://dx.doi.org/10.7546/crabs.2018.07.08.
Texto completo da fonteHart, Carl R., D. Keith Wilson, Chris L. Pettit e Edward T. Nykaza. Machine-Learning of Long-Range Sound Propagation Through Simulated Atmospheric Turbulence. U.S. Army Engineer Research and Development Center, julho de 2021. http://dx.doi.org/10.21079/11681/41182.
Texto completo da fonte