Literatura científica selecionada sobre o tema "Modulation of oncogene expression"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Modulation of oncogene expression".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Modulation of oncogene expression"
Seldin, M. F., J. D. Mountz, J. F. Mushinski, H. R. Smith e A. D. Steinberg. "IL-2 Modulation of Murine T-Cell Oncogene Expression". Experimental Biology and Medicine 184, n.º 2 (1 de fevereiro de 1987): 186–90. http://dx.doi.org/10.3181/00379727-184-42465.
Texto completo da fonteHarel-Bellan, Annick, e William L. Farrar. "Modulation of proto-oncogene expression by colony stimulating factors". Biochemical and Biophysical Research Communications 148, n.º 3 (novembro de 1987): 1001–8. http://dx.doi.org/10.1016/s0006-291x(87)80231-0.
Texto completo da fonteSpirin, P. V., N. A. Nikitenko, T. D. Lebedev, P. M. Rubtsov, C. Stocking e V. S. Prasolov. "Modulation of activated oncogene c-kit expression with RNA-interference". Molecular Biology 45, n.º 6 (dezembro de 2011): 950–58. http://dx.doi.org/10.1134/s0026893311060136.
Texto completo da fonteSarno, Federica, Désirée Goubert, Emilie Logie, Martijn G. S. Rutten, Mihaly Koncz, Christophe Deben, Anita E. Niemarkt et al. "Functional Validation of the Putative Oncogenic Activity of PLAU". Biomedicines 11, n.º 1 (30 de dezembro de 2022): 102. http://dx.doi.org/10.3390/biomedicines11010102.
Texto completo da fonteKakhlon, O., Y. Gruenbaum e Z. I. Cabantchik. "Repression of ferritin expression modulates cell responsiveness to H-ras-induced growth". Biochemical Society Transactions 30, n.º 4 (1 de agosto de 2002): 777–80. http://dx.doi.org/10.1042/bst0300777.
Texto completo da fonteLehtola, L., M. Nistér, E. Hölttä, B. Westermark e K. Alitalo. "Down-regulation of cellular platelet-derived growth factor receptors induced by an activated neu receptor tyrosine kinase." Cell Regulation 2, n.º 8 (agosto de 1991): 651–61. http://dx.doi.org/10.1091/mbc.2.8.651.
Texto completo da fonteBell, S. M., D. C. Connolly, N. J. Maihle e J. L. Degen. "Differential modulation of plasminogen activator gene expression by oncogene-encoded protein tyrosine kinases". Molecular and Cellular Biology 13, n.º 9 (setembro de 1993): 5888–97. http://dx.doi.org/10.1128/mcb.13.9.5888-5897.1993.
Texto completo da fonteBell, S. M., D. C. Connolly, N. J. Maihle e J. L. Degen. "Differential modulation of plasminogen activator gene expression by oncogene-encoded protein tyrosine kinases." Molecular and Cellular Biology 13, n.º 9 (setembro de 1993): 5888–97. http://dx.doi.org/10.1128/mcb.13.9.5888.
Texto completo da fonteCodony, Carles, Sònia Guil, Concha Caudevilla, Dolors Serra, Guillermina Asins, Adolf Graessmann, Fausto G. Hegardt e Montse Bach-Elias. "Modulation in vitro of H-ras oncogene expression by trans-splicing". Oncogene 20, n.º 28 (junho de 2001): 3683–94. http://dx.doi.org/10.1038/sj.onc.1204473.
Texto completo da fontePierotti, Marco A., Maria G. Borrello, Italia Bongarzone, Maria R. Cattadori Rosangela Donghi, Piera Mondellini, Catia Traversari e Giuseppe Della Porta. "Modulation of the human Ha--1 oncogene expression by DNA methylation". European Journal of Cancer and Clinical Oncology 23, n.º 11 (novembro de 1987): 1788–89. http://dx.doi.org/10.1016/0277-5379(87)90683-3.
Texto completo da fonteTeses / dissertações sobre o assunto "Modulation of oncogene expression"
Appleby, Mark William. "Oncogene expression and the modulation of keratinocyte self renewal". Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306476.
Texto completo da fonteCristofari, Camilla. "Non Canonical structures within MYC and BCL2 oncogenes: novel targets for gene expression modulation". Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3422715.
Texto completo da fonteOggigiorno una delle “piaghe” che affligge maggiormente la popolazione mondiale è il cancro. Il trattamento di queste forme neoplastiche sfrutta agenti chemioterapici e radioterapici, caratterizzati da numerose limitazioni legate ai notevoli effetti collaterali, alla tossicità e alla selezione di fenotipi resistenti a tali terapie. Ciò ha portato allo sviluppo delle targeted therapy, che sfruttano entità chimiche (small molecules, anticorpi monoclonali, miRNA, siRNA ecc.) selettive per un bersaglio molecolare caratteristico del fenotipo tumorale. Nonostante più mirati anche questi approcci presentano degli effetti collaterali Pertanto la modulazione dell’espressione genica che sfrutta la capacità degli acidi nucleici di assumere differenti conformazioni, definite non canoniche, ha destato sempre più interesse. Tra le possibili strutture non canoniche di notevole interesse sono le conformazioni tetraelicoidali note come G-quadruplex (G4) e i-Motif (iM). La struttura G4 è propria di sequenze di DNA e RNA contenenti un’elevata abbondanza di guanine consecutive che, mediante legami a idrogeno di tipo Hoogstein, generano delle strutture planari chiamate tetradi. Dall’’impilamento di due o più tetradi si genera la struttura a tetraelica. Poiché il DNA è una doppia elica, il filamento complementare a queste regioni G ricche presenta un’elevata abbondanza di citosine. Anche questi domini in particolari condizioni ambientali, possono generare una conformazione tetraelicoidale, nota come i-Motif. A differenza del G4, il building block dell’intera struttura è un dimero di citosine stabilizzato dalla presenza di tre legami a idrogeno. In vivo l’esistenza di queste conformazioni, genera una sorta d’ingombro sterico a livello del DNA e ciò presuppone un effetto d’inibizione/attivazione del processo di elongazione del telomero o del processo trascrizionale. Sotto la supervisione del Dott. Laurence J. Hurley, è stata implementata la caratterizzazione strutturale della stringa di citosine contenute nel promotore del gene MYC. In seguito un selezionato ligando è stato testato con l’idea di poter modulare il processo di folding/unfolding alla base dell’attivazione trascrizionale. Infine, l’effetto mediato da questo composto sul processo apoptotico è stato preso in considerazione lavorando su una selezionata linea cellulare. Di notevole interesse sono le regioni GC-ricche contenute nella porzione non tradotta del trascritto primario (mRNA). Sulla base di ciò, in questo progetto, sono state prese in considerazioni, le stringhe di guanina e citosina contenute nella regione del 5’-UTR, sia a livello del DNA sia del RNA, del gene BCL2. Inizialmente è stato condotto uno studio di caratterizzazione sulle sequenze minimali dBcl2_G, dBcl2_C e rBcl2_G. In seguito è stato preso in considerazione l’effetto della presenza di nucleotidi adiacenti sul processo di folding verso il G-quadruplex (dBcl2_G + 3WC, rBcl2_G + 3WC e rBcl2_48). I dati ottenuti dimostrano che le sequenze dBcl2_G e rBcl2_G sono in grado di assumere molteplici conformazioni G4. La presenza di nucleotidi addizionali modula la loro capacità di assumere queste conformazioni. In particolare, la presenza di tre appaiamenti WC impedisce parzialmente la formazione del G4 sia nel DNA, che nel RNA mentre, l’aggiunta di un maggior numero di basi (rBcl2_48) sposta l’equilibrio conformazionale verso una conformazione in forte competizione con il G4. Per la sequenza ricca di citosine, l’equilibrio conformazionale è stato valutato sia in ambiente blandamente acido, che in un ambiente che mima la condizione fisiologica. Infine, poiché negli ultimi anni è stata dimostrata la capacità di alcuni ligandi sintetici/naturali, di spostare gli equilibri conformazionali del DNA, dalla classica forma a doppio filamento, verso queste conformazioni tetraelicoidali, una selezionata libreria di composti è stata, scrinata allo scopo di individuare un ligando in grado di riconoscere e stabilizzare selettivamente una conformazione al pari di un'altra.
Froux, Aurane. "G-quadruplex binding by transition metal complexes : the whole pathway from design to synthesis, to in cellulo anticancer investigations". Electronic Thesis or Diss., Université de Lorraine, 2024. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2024_0206_FROUX.pdf.
Texto completo da fonteTriple-negative breast cancer and pancreatic adenocarcinoma are associated to very low survival-rates due to their high resistance to conventional treatments, posing significant public healthiness issue. The development of new targeted therapeutic options is then crucial. G-rich sequences in nucleic acids can form non-conventional secondary structures, known as G-quadruplexes, identified in telomeric sequences and in the promoters of potent oncogenes, such as cMYC, cKIT, and BCL2. These structures play a critical role in regulating gene expression, making them as promising therapeutic targets in cancer treatment.In this study, we employed a transdisciplinary approach, integrating chemical synthesis, molecular dynamic simulations, and cellular and molecular biology, to identify novel G-quadruplex binders and stabilizers aimed at controlling cancer progression. Previous work in our laboratory demonstrated that symmetric planar metal complexes could specifically bind these structures. In that sense, we synthesized 12 new transition metal complexes of Zn2+, Ni2+, Cu2+, Pd2+ and Pt2+, from the Salphen scaffold. Their ability to selectively bind and stabilize G-quadruplexes over double-stranded DNA were confirmed. Molecular dynamic simulations revealed an unconventional binding mode involving interaction with the G-quadruplex loop.Immunofluorescence assays confirmed that the compounds enhance G-quadruplex formation, in cancer cell lines, leading to the early downregulation of several G-quadruplex-driven oncogenes, such as kRAS, RET, and cMYC. This downregulation reduced cancer cell proliferation and viability, with less effect on non-cancerous cells.Some complexes induced apoptosis in cancer cells without affecting the non-neoplastic cells, after decreased hRAS and cMYC transcript levels, while other compounds caused DNA damage in pancreatic cancer cells T3M4. Notably, Zn2+ compounds increased VEGF-A expression, enhancing its transcription. We also investigated the effects of G-quadruplex stabilization on macrophages polarization, showing that nickel compounds promoted the polarization of M0 macrophages towards the anticancer M1 phenotype, while inhibiting the acquisition of pro-tumoral M2 markers.Overall, our novel metal complexes demonstrate significant potential in stabilizing G-quadruplex and exhibit promising anticancer properties, including modulation of the tumor microenvironment. These preliminary results suggest avenues for further research, with potential implications for advancing strategies in cancer therapy
Rost, Nathalie. "Expression et régulation du gène de la proenképhaline dans un modèle expérimental de tumeur cérébrale chez le rat". Grenoble 1, 1991. http://www.theses.fr/1991GRE10048.
Texto completo da fonteEllis, D. K. "Cellular oncogene expression during retinal transdifferentiation". Thesis, University of Nottingham, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371121.
Texto completo da fonteChan, Yuk Fai. "Manipulation of EWS oncogene expression using RNAi /". View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?BIOL%202005%20CHAN.
Texto completo da fonteRadhakrishnan, Vijayababu, Charles Putnam, Wenqing Qi e Jesse Martinez. "P53 suppresses expression of the 14-3-3gamma oncogene". BioMed Central, 2011. http://hdl.handle.net/10150/610345.
Texto completo da fonteWatson, Dorothy M. A. "Cyclic nucleotide binding and oncogene expression in breast cancer". Thesis, University of Edinburgh, 1989. http://hdl.handle.net/1842/19398.
Texto completo da fonteAmouyel, Philippe. "Expression des proto-oncogenes ets dans les astrocytes et dans les tumeurs astrocytaires". Lille 2, 1988. http://www.theses.fr/1988LIL2M054.
Texto completo da fonteRitchie, Andrew John. "Endocrinology, oncogene expression and outcome in carcinoma of the lung". Thesis, Queen's University Belfast, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357457.
Texto completo da fonteLivros sobre o assunto "Modulation of oncogene expression"
Darley, Richard Lawrence. Modulation of major histocompatibility antigen expression by the ras oncogene in murine fibroblast cells. [s.l.]: typescript, 1992.
Encontre o texto completo da fonteTravers, Helen. Oncogene regulation of gene expression. Manchester: University of Manchester, 1996.
Encontre o texto completo da fonteMorgan, James I. Proto-Oncogene expression in the nervous /system. Amsterdam: Published by Elsevier for the Foundation for the study of the Nervous System (FESN), 1991.
Encontre o texto completo da fonteDetta, Allah. Proliferative potential and proto-oncogene expression in human meningioma. Birmingham: Universityof Birmingham, 1993.
Encontre o texto completo da fonteRowley, S. Nuclear oncogene expression in the prognosis of colorectal cancer. Birmingham: University of Birmingham, 1990.
Encontre o texto completo da fonteEric, Blair G., Pringle Craig R e Maudsley D. John, eds. Modulation of MHC antigen expression and disease. Cambridge: Cambridge University Press, 1995.
Encontre o texto completo da fonteRottleb, Christoph. Modulation der c-myc-Expression durch exogene Stimuli. [s.l.]: [s.n.], 1991.
Encontre o texto completo da fonteLuo, Jiin-Chyuan John. Blood oncoprotein expression in colonic neoplasia. [New York]: Columbia University, School of Public Health, 1994.
Encontre o texto completo da fonteS, Denison Michael, e Helferich William, eds. Toxicant-receptor interactions: Modulation of signal transduction and gene expression. Washington, DC: Taylor & Francis, 1998.
Encontre o texto completo da fontePalese, Peter, ed. Modulation of Host Gene Expression and Innate Immunity by Viruses. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3242-0.
Texto completo da fonteCapítulos de livros sobre o assunto "Modulation of oncogene expression"
Nakaishi, Hitoshi. "Functionally Distinct Oncogenes Differently Regulate Cellular Expression of Gangliosides". In Gangliosides and Modulation of Neuronal Functions, 325–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71932-5_30.
Texto completo da fonteMcCarty, K. S., e K. S. McCarty. "Steroid modulation of the expression of growth factors and oncogenes in breast cancer". In Regulatory Mechanisms in Breast Cancer, 197–220. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3940-7_9.
Texto completo da fonteRobins, Roland K., Rick A. Finch e Thomas L. Avery. "Nucleoside and Nucleotide Modulation of Oncogenic Expression: A New Approach to Cancer Chemotherapy". In Anticancer Drug Discovery and Development: Natural Products and New Molecular Models, 149–82. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2610-0_9.
Texto completo da fonteKlement, V. "Radiation-Enhanced Oncogene Expression". In Realm of Tolerance, 180–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74712-0_21.
Texto completo da fonteHöfler, H. "Oncogene and Receptor Expression". In Current Topics in Pathology, 435–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75515-6_12.
Texto completo da fonteSasaki, Yutaka, Norio Hayashi, Masayoshi Horimoto, Toshifumi Ito, Hideyuki Fusamoto e Takenobu Kamada. "Oncogene Expression in Liver Injury". In Liver and Environmental Xenobiotics, 151–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-12385-0_12.
Texto completo da fonteBaker, Vicki V. "Oncogene expression in cervical cancer". In Gynecologic Oncology, 43–51. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2598-1_4.
Texto completo da fonteIchimura, Koichi, Kimiyoshi Hirakawa, Atsushi Komatsuzaki e Yasuhito Yuasa. "Oncogene Expression in Acoustic Neurinomas". In Biological Aspects of Brain Tumors, 337–42. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68150-2_45.
Texto completo da fonteSymonds, R. P., T. Habeshaw, J. Paul, D. J. Kerr, A. Darling, R. A. Burnett, F. Sotsiou, S. Linardopoulos e D. A. Spandidos. "Oncogene Expression and Cervical Cancer". In The Superfamily of ras-Related Genes, 277–83. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-6018-6_30.
Texto completo da fonteMurphy, Gretchen A., e Channing J. Der. "Ras-Mediated Deregulation of Gene Expression and Contribution to Oncogenesis". In Oncogene-Directed Therapies, 77–99. Totowa, NJ: Humana Press, 2003. https://doi.org/10.1007/978-1-59259-313-2_5.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Modulation of oncogene expression"
Wang, Pengpeng, Zhan Wang, Peng You e Yiyue Liu. "Construction of the Unified Coded Expression for Intra-Pulse Phase Modulation in Pulse Radar". In 2024 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/icmmt61774.2024.10671868.
Texto completo da fonteChakrabarti, Mrinmay, James S. Norris, Naren L. Banik e Swapan K. Ray. "Abstract 1101: Modulation of expression of specific oncogenic and tumor suppressor microRNAs enhanced therapeutic efficacy of 4-HPR and EGCG in human malignant neuroblastoma cells". In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-1101.
Texto completo da fonteFeng, Gong, Patricia Hicks, Charles W. Prince, Candece Gladson e Pi-Ling Chang. "OSTEOPONTIN ENHANCES PROTO-ONCOGENE (Junb) EXPRESSION IN PRENEOPLASTIC MOUSE CELLS". In 3rd International Conference on Osteopontin and SIBLING (Small Integrin-Binding Ligand, N-linked Glycoprotein) Proteins, 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.253.
Texto completo da fonteDachineni, Rakesh, Goqiang Ai e Jayarama B. Gunaje. "Abstract 3501: Aspirin modulates oncogene expression in hct 116 colon cancer cells". In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3501.
Texto completo da fonteGe, Lin, Lin Ge, Wenxia Meng, Hongmei Zhou e Neil Bhowmick. "Abstract 1015: Head and neck cancer expression of YAP65: A novel oncogene". In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-1015.
Texto completo da fonteKoch, Daniel, Stacey Adams, Andrew Gentles, Benedict Anchang, Delaney Sullivan, Sylvia Plevritis e Dean Felsher. "Abstract A48: Gene expression signatures associated with MYC oncogene addiction in lymphoma". In Abstracts: AACR Special Conference on Myc: From Biology to Therapy; January 7-10, 2015; La Jolla, CA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1557-3125.myc15-a48.
Texto completo da fonteWormser, L., A. Gaza, V. Fritz, C. Hellerbrand, AK Bosserhoff e P. Dietrich. "Expression and function of neuroblastoma RAS viral oncogene homolog (NRAS) in hepatocellular carcinoma". In 35. Jahrestagung der Deutschen Arbeitsgemeinschaft zum Studium der Leber. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0038-1677241.
Texto completo da fonteGuerrero, Sergi, Rudolf Fehrmann e Marcel ATM van Vugt. "Abstract 1406: Towards an RNA expression-based signature for oncogene-induced replication stress". In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-1406.
Texto completo da fonteOev, M. S., E. M. Shpadaruk e R. M. Smolyakova. "PROGNOSTIC SIGNIFICANCE OF DETERMINING THE LEVEL OF EXPRESSION OF ERCC1, TS, TP IN COLORECTAL CANCER". In SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-2-41-45.
Texto completo da fonteBenitez, Jorge A., Webster K. Cavenee e Frank F. Furnari. "Abstract 5253: PTEN represses oncogene expression by regulating Daxx-H3.3 deposition in the chromatin". In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-5253.
Texto completo da fonteRelatórios de organizações sobre o assunto "Modulation of oncogene expression"
Anderson, A., e G. E. Woloschak. Cellular oncogene expression following exposure of mice to {gamma}-rays. Office of Scientific and Technical Information (OSTI), junho de 1991. http://dx.doi.org/10.2172/10148918.
Texto completo da fontePrusky, Dov, e Jeffrey Rollins. Modulation of pathogenicity of postharvest pathogens by environmental pH. United States Department of Agriculture, dezembro de 2006. http://dx.doi.org/10.32747/2006.7587237.bard.
Texto completo da fonteMcGuffie, Eileen M., e Carlo V. Catapano. Development of Triplex-Forming Oligonucleotides to Inhibit Expression of the c-myc Oncogene in Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, abril de 2003. http://dx.doi.org/10.21236/ada416148.
Texto completo da fonteRedmond, Sarah Beth, Rachel Tell, Derrick Coble, Carrie Mueller, Dušan Palić, Claire B. Andreasen e Susan J. Lamont. Genetic Differences in Chicken Splenic Immune Gene Expression in Response to Dietary Immune Modulation. Ames (Iowa): Iowa State University, janeiro de 2010. http://dx.doi.org/10.31274/ans_air-180814-166.
Texto completo da fonteDickson, Robert B. Modulation of Cyclin Expression by C-MYC in Malignant and Nonmalignant Mammary Epithelial Cells. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1995. http://dx.doi.org/10.21236/ada302398.
Texto completo da fonteImbalzano, Anthony N. In Vivo and In Vitro Analysis of the Regulation of c-myc Proto-Oncogene Expression in Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1995. http://dx.doi.org/10.21236/ada305616.
Texto completo da fonteWoloschak, G. E., e Chin-Mei Chang-Liu. Modulation of expression of genes encoding nuclear proteins following exposure to JANUS neutrons or {gamma}-rays. Office of Scientific and Technical Information (OSTI), maio de 1994. http://dx.doi.org/10.2172/10148904.
Texto completo da fonteWoloschak, G. E., e Chin-Mei Chang-Liu. Modulation of expression of genes encoding nuclear proteins following exposure to JANUS neutrons or {gamma}-rays. Office of Scientific and Technical Information (OSTI), agosto de 1994. http://dx.doi.org/10.2172/10171321.
Texto completo da fonteBroadley, Caroline, Debra A. Gonzalez, Rhada Nair e Jeffrey M. Davidson. Canine Vocal Fold Fibroblasts in Culture: Expression of alpha-Smooth Muscle Actin and Modulation of Elastin Synthesis. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1991. http://dx.doi.org/10.21236/ada302739.
Texto completo da fonteLocy, Robert D., Hillel Fromm, Joe H. Cherry e Narendra K. Singh. Regulation of Arabidopsis Glutamate Decarboxylase in Response to Heat Stress: Modulation of Enzyme Activity and Gene Expression. United States Department of Agriculture, janeiro de 2001. http://dx.doi.org/10.32747/2001.7575288.bard.
Texto completo da fonte