Teses / dissertações sobre o tema "Modélisation des neurones"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores trabalhos (teses / dissertações) para estudos sobre o assunto "Modélisation des neurones".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja as teses / dissertações das mais diversas áreas científicas e compile uma bibliografia correta.
Yonaba, Harouna. "Modélisation hydrologique hybride : réseau de neurones - modèle conceptuel". Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26583/26583.pdf.
Texto completo da fonteMichel, Christophe. "Modélisation mathématique de l'activité électrophysiologique des neurones auditifs primaires". Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2012. http://tel.archives-ouvertes.fr/tel-00808610.
Texto completo da fonteDouence, Vincent. "Circuits et systèmes de modélisation analogique de neurones biologiques". Bordeaux 1, 2000. http://www.theses.fr/2000BOR10596.
Texto completo da fonteHodara, Pierre. "Systèmes de neurones en interactions : modélisation probabiliste et estimation". Thesis, Cergy-Pontoise, 2016. http://www.theses.fr/2016CERG0854/document.
Texto completo da fonteWe work on interacting particles systems. Two different types of processes are studied. A first model using Hawkes processes, for which we state existence and uniqueness of a stationnary version. We also propose a graphical construction of the stationnary measure by the mean of a Kalikow-type decomposition and a perfect simulation algorithm.The second model deals with Piecewise deterministic Markov processes (PDMP). We state ergodicity and propose a Kernel estimator for the jump rate function having an optimal speed of convergence in L²
Dubois-Boissier, Marie-Dominique. "Modélisation d'un neurone du striatum". Université Joseph Fourier (Grenoble), 1996. http://www.theses.fr/1996GRE19004.
Texto completo da fonteMeunier, David. "UNE MODÉLISATION ÉVOLUTIONNISTE DU LIAGE TEMPOREL". Phd thesis, Université Lumière - Lyon II, 2007. http://tel.archives-ouvertes.fr/tel-00198797.
Texto completo da fonteNous avons développé un modèle de réseau de neurones impulsionnels, dont la topologie est modifiée par un algorithme évolutionniste. Le critère de performance utilisé pour l'algorithme évolutionniste est évalué par l'intermédiaire du comportement d'un individu contrôlé par un réseau de neurones impulsionnels, et placé dans un environnement virtuel. L'utilisation du neurone impulsionnel, ayant la propriété de détection de synchronie, oblige l'évolution à construire un système utilisant cette propriété au niveau global, d'où l'émergence de la synchronisation neuronale à large-échelle. Les propriétés topologiques et dynamiques du réseau de neurones ne sont pas prises en compte dans le calcul de la performance, mais sont étudiées a posteriori, en comparant les individus avant et après évolution.
D'une part, grâce aux outils de la théorie des réseaux complexes, nous montrons l'émergence d'un certain nombre de propriétés topologiques, notamment la propriété de réseau ``petit-monde''. Ces propriétés topologiques sont similaires à celles observées au niveau de l'anatomie des systèmes nerveux en biologie. D'autre part, au niveau de la dynamique, nous établissons que la propriété de synchronisation neuronale à large-échelle, résultant de la présentation d'un stimulus, est présente chez les individus évolués. Pour ce faire, nous nous appuyons sur les outils classiquement utilisés en électrophysiologie, et nous les étendons pour pouvoir interpréter la grande quantité de données obtenue à partir du modèle.
Le modèle montre que l'on peut construire des réseaux de neurones basés sur l'hypothèse du liage temporel en ayant recours à l'évolution artificielle, en se basant sur un critère de performance écologique, c.à.d. le comportement de l'individu dans son environnement. D'autre part, les outils développés pour l'analyse des propriétés du modèle peuvent être utilisés dans d'autres domaines, en premier lieu en électrophysiologie. En effet, à cause des progrès techniques sur les enregistrements électrophysiologiques, la quantité de données se rapproche singulièrement de celle issue du modèle.
Chevallier, Julien. "Modélisation de grands réseaux de neurones par processus de Hawkes". Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4051/document.
Texto completo da fonteHow does the brain compute complex tasks? Is it possible to create en artificial brain? In order to answer these questions, a key step is to build mathematical models for information processing in the brain. Hence this manuscript focuses on biological neural networks and their modelling. This thesis lies in between three domains of mathematics - the study of partial differential equations (PDE), probabilities and statistics - and deals with their application to neuroscience. On the one hand, the bridges between two neural network models, involving two different scales, are highlighted. At a microscopic scale, the electrical activity of each neuron is described by a temporal point process. At a larger scale, an age structured system of PDE gives the global activity. There are two ways to derive the macroscopic model (PDE system) starting from the microscopic one: by studying the mean dynamics of one typical neuron or by investigating the dynamics of a mean-field network of $n$ neurons when $n$ goes to infinity. In the second case, we furthermore prove the convergence towards an explicit limit dynamics and inspect the fluctuations of the microscopic dynamics around its limit. On the other hand, a method to detect synchronisations between two or more neurons is proposed. To do so, tests of independence between temporal point processes are constructed. The level of the tests are theoretically controlled and the practical validity of the method is illustrated by a simulation study. Finally, the method is applied on real data
Roudgé, Mathieu. "Modélisation expérimentale par les réseaux de neurones du perçage multi-materiaux". Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14226/document.
Texto completo da fonteNew advances in the field of materials science have led to the emergence of new issues particularly concerning their holes. In the case of aeronautical structures, the drilling of multi-material panels CFRP / aluminum is just before final assembly. Pierced parts thus have a high added value. The interest can predict when the quality of the hole approaches the limits of the specifications takes a lot of sense. The establishment of an experimental model multi-materials by neural networks can predict the quality of the hole made for a given stacking sequence.Using a similar approach, a monitoring system offline drilling multi-materials has been established. Two methods have been developed: the general method to adapt to a large number of stacking and specific method, more accurate, but the range of validity is confined to a single sequence
Berthommier, Frédéric. "Intégration neuronale dans le système auditif : modélisation de réseaux neuronaux temporo-dépendants". Phd thesis, Université Joseph Fourier (Grenoble), 1992. http://tel.archives-ouvertes.fr/tel-00342101.
Texto completo da fonteBerthommier, Frédéric. "Intégration neuronale dans le système auditif : modélisation de réseaux neuronaux temporo-dépendants". Phd thesis, Grenoble 1, 1992. https://theses.hal.science/tel-00342101.
Texto completo da fonteAbassi, Mohamed Habib. "Modélisation par réseaux de neurones de la maintenabilité d'un logiciel en télécommunication". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0006/MQ43746.pdf.
Texto completo da fonteBoucher, Marie-Amélie. "Modélisation hydrologique probabiliste par réseaux de neurones : calibration de la distribution prédictive". Thesis, Université Laval, 2006. http://www.theses.ulaval.ca/2006/24021/24021.pdf.
Texto completo da fonteGoulet-Fortin, Jérôme. "Modélisation des rendements de la pomme de terre par réseau de neurones". Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26556/26556.pdf.
Texto completo da fonteJemeï, Samir. "Modélisation d'une Pile à Combustible de type PEM par Réseaux de Neurones". Phd thesis, Université de Franche-Comté, 2004. http://tel.archives-ouvertes.fr/tel-00777611.
Texto completo da fonteGuiochon, Samuel. "Modélisation et contrôle en ligne d'une polymérisation : l'apport des réseaux de neurones". Bordeaux 1, 1996. http://www.theses.fr/1996BOR10637.
Texto completo da fonteBal, Lyes. "Modélisation du retrait et du fluage du béton par réseaux de neurones". Thesis, Lille 1, 2009. http://www.theses.fr/2009LIL10112/document.
Texto completo da fonteConcrete is the material the most used in construction works for a century. After establishment and setting, various physical and mechanical dimensional developments. Occur drying is developing with hardening of concrete and leads to significant dimensional changes, that can induce cracking, pre judiciable at the durability of the civil engineering works. This study aims to demonstrate the application of a nonparametric approach called Artificial Neural Networks to provide effective spontaneous and differed dimensional variations (drying shrinkage and drying creep). Using this approach allows the development of predicting models. These models use a multi layer back propagation. They also rely on a very large database of experimental results obtained in the literature and an appropriate choice of architectures and learning process. These models take into account the different parameters of preservation and making that affect drying shrinkage and creep of concrete. To appreciate the validity of our models, we have compared with other existing models : B3, ACI 209, CEB and GL2000. In these comparisons, it appears that our models are correctly adapted to describe the time evolution of drying shrinkage and creep
Guerin, Paul. "Modélisation et recherche de stratégies expérimentales dans l’atrophie multisystématisée". Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0141.
Texto completo da fonteAbstract: Multiple system atrophy (MSA) is a rapidly progressing orphan disease characterized by neurodegeneration in several brain regions, including olivopontocerebellar and striatonigral systems, together with several brainstem autonomic nuclei. The hallmark of MSA is the presence of oligodendroglial aggregates named glial cytoplasmic inclusions, which are mostly composed of the protein α-synuclein (α-syn). The neurodegenerative process causes a variable combination of parkinsonism, cerebellar impairment and autonomic dysfunction. No disease modifying therapies, nor peripheral biomarkers that would allow detecting or monitoring the evolution of MSA, are yet available. My PhD work was a multifactorial approach which allowed me to work on the different levels of therapeutic research, from animal modelling to preclinical research, and finally the search for fluid biomarkers in patient samples. We first created new models of MSA based on viral-mediated overexpression of α-syn in striatal oligodendrocytes in rats and non-human primates. We showed in our rat model progressive motor dysfunction, degeneration of dopaminergic neurons of the substantia nigra pars compacta (SNc) and striatal neurons, as well as pathological aggregation of α-syn. For the primate model, we established the specificity of oligodendroglial α-syn expression and the reach of the viral infection. In the second part, we studied the effect of three therapeutic strategies on neurodegeneration and α-syn aggregation in a transgenic murine model of MSA. Rapamycine, known to activate protein degradation through autophagy, showed a partial neuroprotective effect on dopaminergic neurons of the SNc, while intraperitoneal administration of nilotinib, which exerted neuroprotective and anti-aggregative effects in several models of Parkinson’s disease, failed to show any effect in transgenic MSA mice. The last therapeutic strategy aimed to act on brain insulin resistance, which is one of the pathological features found in MSA patient brains, through viral-mediated overexpression of a micro RNA that reduces the expression of the G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptor kinase 2 (GRK2). The inhibition of the GRK2 kinase, which is involved in mediating insulin resistance, showed neuroprotective effects in the SNc in transgenic MSA mice. The third project of my PhD work consisted in the assessment of several potential fluid biomarkers in MSA patients using the SIMOA technology
Vasilache, Adriana. "Les réseaux de neurones pour la modélisation et la commande des procédés biotechnologiques". Toulouse, INSA, 2000. http://www.theses.fr/2000ISAT0050.
Texto completo da fonteIn this work we realize a study on the use of the neural nets for the modeling, classification and the control of fermentation processes. The black-box models (we consider a neural net like a black box model) are of great help for processes or phenomena modeling when analytical models cannot be deduced from physical considerations. Some of the advantages of the neural nets when compared to other black-box models are: they are universal approximators using a small number of parameters, their basis functions are adaptive, their repetitive structure permits an easy implementation both software and hardware and they have the property of implicit regularization. These, combined with the characteristics of the biological processes (which are non-linear, non-stationary processes whose dynamics isn’t entirely known), are the reason for which the neural nets are used for the modeling of such processes. We have thus used existing neural models and proposed new ones for the cases of lactic and alcoholic fermentations. We have presented two approaches for the characterization of the fermentation process dynamics: the modeling of the specific biomass growth rate, the most important dynamic parameter of a fermentation process and the global characterization of the process dynamics using a neural classifier. The two approaches have been tested in simulation and on real data for lactic or alcoholic fermentation processes. The use of a classifier of the process dynamics represents a potential tool for process supervision by means of detecting the changes in the process dynamics as well as an aid for the process modeling in the case of batch processes. The prediction of the biomass concentration has also been considered for a continuous fermentation process. The neural models have been tested in a predictive control strategy and compared with a similar strategy using adaptive modeling. The neural prediction has been an incontestable winner for the cases where the process dynamics changes in time. The last issue of our study has been the prediction of the respiratory quotient for a alcoholic fermentation for which we proposed a neural model. It has been proposed in view of a predictive control strategy for the maintenance of a certain regime (fermentative or oxidative)
Cottrell, Marie. "Modélisation de réseaux de neurones par des chaines de Markov et autres applications". Paris 11, 1988. http://www.theses.fr/1988PA112232.
Texto completo da fonteThe first part of the thesis consists of a paper published in IEEE Trans. Aut. Control (vol. AC-28, n°9, 1983), with J. C. Fort and G. Malgouyres. It gives two methods of calculating the exit time of a Markov chain from an attraction domain this time is extremely long, sa we use an exponential change of probability (that of large deviations theory), for a fast simulation and a non-standard approximation by diffusion. The second part includes two papers published with J. C. Fort in the Annales de l'IHP, Probabilités and Statistiques (vol. 23, n° 1, 1987}, and in Biological Cybernetics (n° 53, 1986). In the first one, we prove the convergence of Kohonen's self-organizing algorithm, in dimension 1. In the second one, we define another self-organizing algorithm, which is a simplified variant of Kohonen's, and we prove its convergence in dimensions 1 and 2. In the third part, published in Biological Cybernetics (n°58, 1988), we solve the problem of the connection matrix calculus for a Mac-Culloch or Hopfield neural network, so as to get the largest attractivity for the deterministic algorithm and non-orthogonal patterns. Then we calculate the attractivity of each memorized pattern, for a given connection matrix. The last part is devoted to the study of the role of inhibition in a nearest-neighbours-connected neural network. The model closely ressembles the biological reality of the young animal's cerebellar cortex. We prove that, when inhibition is smaller than a certain threshold, the network is ergodic and works in a stationary way. Conversely, when inhibition increases, striped or moiré responses appear, whose form and width depend on the considered neighbourhood size
Rey-Fabret, Isabelle. "Les réseaux de neurones pour la modélisation des écoulements d'effluents dans les pipelines". Paris, CNAM, 2005. http://www.theses.fr/2005CNAM0513.
Texto completo da fonteTACITE software gives a model of gas/liquid flow in the pipelines. It is composed of a thermodynamic module, an hydrodynamic module and a numerical scheme. It sometimes encounters difficulties because of the non derivability of the hydrodynamic function. The aim of the tesis is to assume the derivability of the hydrofynamic function. The aim of the thesis is to assume the derivability of this function by usin neural networks methodology. By analysing the problem, a multi-experts neural network is proposed. Its structure is based on the TACITE hydrodynamic module's one. The use of the HVS selection of varainles increases the model performances. Different integration tests in TACITE show that it is able to replace the TACITE hydrodynamic model, and can improve TACITE robustness. In conclusion, this thesis proposes a derivable model to globally reproduce the complex hydrodynamic phenomena generated by two phase flows
Alexandre, Frédéric. "Une modélisation fonctionnelle du cortex : La colonne corticale : aspects visuels et moteurs". Nancy 1, 1990. http://docnum.univ-lorraine.fr/public/SCD_T_1990_0054_ALEXANDRE.pdf.
Texto completo da fonteHocepied, Gatien. "Détection précoce de crises d'épilepsie à l'aide d'une modélisation du comportement oscillatoire neuronal". Doctoral thesis, Universite Libre de Bruxelles, 2012. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209579.
Texto completo da fonteBadja, Cherif. "Optimisation de la différenciation neuronale et musculaire de cellules pluripotentes induites humaines pour la modélisation des maladies rares : exemple du syndrome de DiGeorge". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM5027/document.
Texto completo da fonteThe DiGeorge syndrome also known as 22q11.2 microdeletion syndrome, is the most common deletion in humans. This deletion is linked to a non-allelic homologous recombination that occurs during meiosis and involves sequences called LCRs for "Low Copy Repeats". Depending on the LCRs involved, different deletions are observed, inducing the loss of approximately 40 genes. The absence of genotype/phenotype correlation in patients and the phenotypical differences regardless of the size of the microdeletion suggests the involvement of additional parameter. The hypothesis of epigenetic changes associated with the onset or variability of symptoms has been suggested but never investigated. In order to tackle this question, we decided to focus our attention of the role of the HIRA histone chaperone encoded by a gene located in the 22q11.2-deleted region. HIRA is involved in the deposition of the H3.3 histone variant, one of the main histone in the brain. In order to determine whether HIRA is implicated in the neurological manifestations in DiGeorge patients and particularly in schizophrenia, we developed and optimized a new protocol for the direct differentiation of human induced pluripotent stem cell (hiPSCs) into neural progenitors, cortical and dopaminergic neurons. In parallel, we developed a new protocol for hiPSCs differentiation toward the skeletal muscle lineage and the production of multinucleated muscle fibers. Altogether, these results open new perspectives for the modeling of a large number of pathologies, and in the context of our laboratory, the exploration of epigenetic mechanisms associated with phenotypic variability in different genetic diseases
Oussar, Yacine. "Réseaux d'ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus". Phd thesis, Université Pierre et Marie Curie - Paris VI, 1998. http://pastel.archives-ouvertes.fr/pastel-00000677.
Texto completo da fonteGaudier, Fabrice. "Modélisation par réseaux de neurones : application à la gestion du combustible dans un réacteur". Cachan, Ecole normale supérieure, 1999. http://www.theses.fr/1999DENS0009.
Texto completo da fonteRochel, Olivier. "Une approche événementielle pour la modélisation et la simulation de réseaux de neurones impulsionnels". Nancy 1, 2004. http://www.theses.fr/2004NAN10004.
Texto completo da fonteAt present, there exists no generic modeling and simulation framework that addresses the study of large spiking neural networks. In the existing models, the impulses are generally associated with discontinuities in the otherwise continuous dynamics of the neurons. This raises modeling and practical implementation issues. We propose an novel approach based on the discrete-event system abstraction, grounded on the DEVS formalism, that can be used to represent a large class of spiking neurons and permits the modeling of large networks. A simulation engine has been developed on top of this formalism. It is based on an efficient event-driven algorithm and has been evaluated on sequential as well as parallel machines. We have tested our approach within a multi-disciplinary project on olfactory perception
Asnaashari, Ahmad. "Modélisation de la défaillance des réseaux d'eau : approches statistique, réseau de neurones et survie". Lille 1, 2007. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2007/50376-2007-Asnaashari.pdf.
Texto completo da fonteOsseni, Mazid Abiodoun. "Modélisation électrophysiologique et biochimique d'un neurone : CA1 cellule de l'hippocampe". Master's thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/26164.
Texto completo da fonteThis master’s thesis presents a new modeling technique for biophysical models of individual neurons that integrates their electrical and biochemical behaviors. First of all, we developped an electrical compartmental model. This model is based on the Hodgkin-Huxley formalism and developped in NEURON, a modeling software tool for neuroscience. Then, we developped a biochemical model. This second model is a system of differential equations based on mass action reations and enzymatic reactions. We implemented two versions of this model, one as a compartmental model with ordinary differential equations (ODE) and the other as a spatial model with partial differential equations (PDE). We used the software tool VCell for the biochemical modeling. The hybrid model combining the electrical and biochemical behaviors has two connection points between the electrical and biochemical models. At the first junction, the calcium curents calculated by the Hodgkin-Huxley equations are converted into a concentration of calcium ions. This calcium is a secondary messenger for numerous cellular signaling pathways and a rise of the calcium concentration modifies the biochemical reaction dynamic. The second junction is the kinases activity on the ionic channel electrical properties. Through phosphorylation, the kinases modulate the electrical response of the neuron. By integrating all these biophysical and biochemical effects in the same methodology, we can build a complex cellular process models. The synaptic crosstalk is a physiological event which leads to a local increase of the membrane excitability that is due to the interaction between electrical and biochemical signals. This interaction represents an excellent case study for the development and the validation of our methodology. Our model includes the regulation of calcium, MAPK the channel KV4.2.
Bensetti, Mohamed. "Etude et modélisation de capteurs destinés au contrôle non destructif par courants de Foucault : mise en oeuvre de méthodes d'inversion". Paris 11, 2004. http://www.theses.fr/2004PA112291.
Texto completo da fonteThis thesis work approaches the problematic related ones to the non destructif testing (ndt) by eddy current, it's divided into three great parts. The first parts is consecrated to implement of the inverse model for the estimate of the physical and geometrical paramters of the tested spicemen. For this fact, we were interested in the inverse models based by neural networks. In this context two application were studied. The micro-coil are dedicated for different applications : radio frequency (rf), nuclear magnetic resonance (nmr), non destructive testing (ndt). . . Depending on the applications, these micro-coils can be used in high frequency. Acctually, the response of the micro-coil at high frequency is significanly different from their low frequency response because of the skin and proximity effects have an influence on the electrical parameters of the micro-coils. The resistance and the inductance of the winding depend on the frequency. The parasitic capacitance of the winding cannot neglected. In the second part of this work, an original method combining by 3d magnetodynamic alalysis and electrostatic analysis is presented to determine the elements of an electric equivalent circuit. The last aspect studied was devoted to developpement of an hybrid approch associating the finite element method (fem) and the boundary integral method (bim) to calculate the response of the coil in the presence of the cracks. Two types of validations were carried out in this work, a comparison of the results obtained by fem with results provided by the cea ( software civa) and a validation of the hybrid method by measurement results
Rivals, Isabelle. "Modélisation et commande de processus par réseaux de neurones ; application au pilotage d'un véhicule autonome". Phd thesis, Université Pierre et Marie Curie - Paris VI, 1995. http://pastel.archives-ouvertes.fr/pastel-00797072.
Texto completo da fonteFrämling, Kary. "Modélisation et apprentissage des préférences par réseaux de neurones pour l'aide à la décision multicritère". Phd thesis, INSA de Lyon, 1996. http://tel.archives-ouvertes.fr/tel-00825854.
Texto completo da fonteTaver, Virgile. "Caractérisation et modélisation hydrodynamique des karsts par réseaux de neurones : application à l'hydrosystème du Lez". Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20169/document.
Texto completo da fonteImproving knowledge of karst hydrodynamics represents a global challenge for water resource because karst aquifers provide approximately 25% of the world population in fresh water. Nevertheless, complexity, anisotropy, heterogeneity, non-linearity and possible non-stationarity of these aquifers makes them underexploited objects due to the difficulty to characterize their morphology and hydrodynamics. In this context, the systemic paradigm proposes others methods by studying these hydrosystems through input-output (rainfall-runoff) relations.This work covers the use of: i) correlation and spectral analysis to characterize response of karst aquifers, ii) neural networks to study and model linear and non-linear relations of these hydrosystems. In order to achieve this, different types of neural networks model configurations are explored to compare behavior and performances of these models. We are looking to constrain these models to make them interpretable in terms of hydrodynamic processes by making the operation of the model closer to the natural system in order to obtain a good representation and extract knowledge from the model parameters.The results obtained by correlation and spectral analysis are used to manage the configuration of neural networks models. Applied on the Lez hydrosystem over the period 1950-1967, results show that neural networks models are capable to model non-linear operation of the karst.Application of neural modelling on two non stationary hydrosystems (Durance in France and Fernow in the the USA) proved the ability of neural networks to model satisfactorily non-stationary conditions. Moreover, two real-time adjustment methods (adaptativity and data assimilation) enhanced the performance of neural network models face to changing conditions of the inputs or of the system itself.Finally, these various methods to analyze and model allow improving knowledge of the rainfall-runoff relationship. Methodological tools developed in this thesis were developed thanks to the application on Lez hydrosystem which has been studied for decades. This study and modeling methodology have the advantage of being applicable to other systems provided the availability of a sufficient database
Constant, Luc. "Modélisation de dispositifs électriques par réseaux de neurones en vue de l'émulation en temps réel". Toulouse, INPT, 2000. http://www.theses.fr/2000INPT051H.
Texto completo da fonteLenkeu, Lenkeu Nadège Octavie. "Modélisation du transport d'eau et du changement de volume dans les neurones et les astrocytes". Master's thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27914.
Texto completo da fonteThe holographic microscopy uses interferometry techniques for measuring changes in volume of neurons with an unprecedented accuracy. A major challenge is to relate the measured phase changes with the neuron volume changes and more to relate the extent of these changes volumes to certain properties of neurons such as the activity level of Cation-Chloride Cotransporter (CCC) and some biomechanical properties membranes. The longer term objective is the use of phase changes for detecting changes in the density response of neurons to an osmotic shock which could possibly allow the detection of many kind of pathologies. To understand the information that can be derived from experimental measurements, it is important to understand the relationship between different variables: force pump Na⁺ – K⁺ ATPase, membrane permeability of water, biomechanical properties of the membranes and the phase changes observed by the experimenter. To achieve this, we need some dynamical system skills, we will use the Ordinary Differential Equations (E.D.O) in order to perform the mathematical modeling of the phenomenon illustrating the variation of the membrane volume, as well as the variations in quantities of K⁺, Na⁺ and Cl⁻, which constitute the main ionic composition of astrocytes, which are the cells studied in this project. In this mathematical recall on dynamical systems, we will talk about the bifurcations for a better understanding of the incoming results since we are expecting bifurcations for our model. We will study deeply the E.D.O. system obtained including the search of equilibrium points and their behavior in the phase space, and we will see if there are bifurcations and what is their meaning. The aim being to obtain bifurcations, which would explain the dysfunction of the astrocytes, and would certainly explain the origin of certain neurodegenerative diseases; we will finally see, after studying the model, that there is no bifurcation, nevertheless the simplicity of the model used opens doors to more complex future projects that will perhaps achieve the desired objectives.
Chambet, Nicolas. "Modélisation physique des réseaux de neurones : étude de comportements collectifs : application au traitement de l'information". Angers, 1995. http://www.theses.fr/1995ANGE0014.
Texto completo da fonteVerzeaux, Laurie. "Etude de l'interaction du TIMP-1 avec ses récepteurs". Thesis, Reims, 2015. http://www.theses.fr/2015REIMS040/document.
Texto completo da fonteTIMP-1, a natural inhibitor of matrix metalloproteinases, exerts pleiotropic effects independent of MMP inhibition and thus participates to the development of some cancers and neurodegenerative disorders. These cytokine-like activities require TIMP-1 binding to membrane receptors. Up to date two receptors, CD63/integrin beta 1 and proMMP-9/CD44, have been characterized. Nevertheless, TIMP-1 residues or regions binding these receptors remain unknown. In this work, we have identified the protein LRP-1 as a new receptor for TIMP 1. In mouse cortical neurons, TIMP-1 preferentially binds DII and DIV domains of LRP-1, is internalized via a LRP-1-dependent endocytosis, reduces neurite length and increases growth cone volume. To go deeper into TIMP-1/LRP-1 interaction, we used an original molecular modeling approach which combined normal mode analysis and molecular dynamic. These in silico studies allow us to point out a clamp movement between the N- and C-terminal domains of TIMP-1. Three residues localized in a region that seems essential for the movement have been mutated (F12, K47 and W105) and single mutants have been produced. These mutants do not reduce neurite outgrowth and are not internalized by LRP-1. In contrast, they interact with the two others receptors proMMP-9 and CD63 and induce associated biological effects. Furthermore, we have identified a sequence of six residues localized in the CD63 extracellular domain I and essential for TIMP 1 binding. The set of our data highlighted new regions of TIMP-1 interacting with its receptors and could lead to design novel therapeutic agents targeting the TIMP-1 cytokine like activities
Saint-Bauzel, Ludovic. "De la modélisation prédictive du comportement pathologique à l'application dans l'intéraction Robot-Patient". Paris 6, 2007. https://tel.archives-ouvertes.fr/tel-00809648.
Texto completo da fonteSabarly, Loïc. "Le Cervelet comme prédicteur dans le contrôle moteur". Paris 6, 2009. http://www.theses.fr/2009PA066103.
Texto completo da fonteKong, A. Siou Line. "Modélisation des crues de bassins karstiques par réseaux de neurones. Cas du bassin du Lez (France)". Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2011. http://tel.archives-ouvertes.fr/tel-00649103.
Texto completo da fonteBenaouda, Djamel. "Modélisation et simulation d'un réseau de neurones formels : implantation sur machine parallèle "hypercube FPS T-40". Phd thesis, Grenoble 1, 1992. http://tel.archives-ouvertes.fr/tel-00340978.
Texto completo da fonteIdoux, Erwin. "Propriétés électrophysiologiques intrinsèques et modélisation des neurones responsables de l'intégration mathématique dans le noyau prepositus hypoglossi". Paris 6, 2007. http://www.theses.fr/2007PA066030.
Texto completo da fonteThe rationale behind this thesis is the understanding of the neural mechanisms involved in the mathematical integration of a velocity signal into a position signal. For eye movements in the horizontal plane, neurons of the prepositus hypoglossi nucleus (PHNn) are responsible for this integration. Here, PHNn have been classified in 3 types (A, B and D) according to their electrophysiological profile and then modeled. Unlike type A and B neurons, which are also found in the medial and lateral vestibular nuclei, type D neurons are specific to the NPH and their membrane potential shows subthreshold oscillations. Besides, persistent sodium conductance is crucial to the electrophysiology of the PHNn, however its impact and location are type-dependant. The intrinsic properties of neurons of the PHN and the vestibular nuclei have been compared to understand the link between the functions of these nuclei and the specific intrinsic properties of their respective neurons
Grondin-Perez, Brigitte. "Les réseaux de neurones pour la modélisation et la conduite des réacteurs chimiques : simulations et expérimentations". Bordeaux 1, 1994. http://www.theses.fr/1994BOR10616.
Texto completo da fonteHarkouss, Youssef. "Application de réseaux de neurones à la modélisation de composants et de dispositifs microondes non linéaires". Limoges, 1998. http://www.theses.fr/1998LIMO0040.
Texto completo da fonteForgez, Christophe. "Méthodologie de modélisation et de commande par réseaux de neurones pour des dispositifs électrotechniques non linéaires". Lille 1, 1998. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/1998/50376-1998-309.pdf.
Texto completo da fonteKong, A. SIou Line. "Modélisation des crues de bassins karstiques par réseaux de neurones. Cas du bassin du Lez (Hérault)". Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20070/document.
Texto completo da fonteKarst is one of the most widespread aquifer formations in the worlds. Their exploitation provides fresh water to practically 25% of the global population. The high level of structure heterogeneity in these aquifers however makes them complex and their behavior is difficult to study, simulate and forecast.Artificial neural networks are machine learning models widely used in surface hydrology since the 90's thanks to their properties of parsimony and universal approximation.In this thesis, artificial neural networks are used to study karst aquifer behavior. Application is done in the Lez. This aquifer situated near Montpellier conurbation (400 000 inhabitants) provides fresh water for a large part of this population.First, a “classical” black box neural network is applied to simulate and forecast Lez spring discharge. A rainfall input selection method is proposed, using cross correlation analysis and cross validation method at the same time. Results show neural model efficiency in order to simulate and forecast the spring discharge of a complex karstic aquifer. The model was tested using two hydrologic cycles including the two most intense floods of the database. Hydrographs shows that neural model was able to extrapolate the maximum flood discharge of the learning database. Forecasting is satisfactory until a one-day horizon.In a second time, extraction of the knowledge data included in the black box is proposed. In order to constrain the model to give physically plausible solution, a priori knowledge about aquifer geology is included into the network architecture. KnoX (Knowledge eXtraction) method proposed in this study aims at extract geological zone contributions to the Lez spring and corresponding response times. The KnoX methodology was applied to a fictitious hydrosystem built using a model with controlled parameters, in particular contributions of subbasin to the outlet and lag time of each subbasin. This application permitted to validate the KnoX methodology. Results obtained on the Lez basin are satisfactory and agree with current knowledge about this hydrosystem. In addition, the KnoX methodology allows to refine this knowledge, in particular concerning delayed infiltration because of infiltration in perched aquifer and concerning Lez spring alimentation basin boundaries. Lastly the KnoX methodology is a generic methodology that can be applied on any basin with available discharge and rainfall data
Hugget, Alain. "Réseaux de neurones et algorithmes génétiques : application à la modélisation et à l'optimisation de séchoirs industriels". Bordeaux 1, 1998. http://www.theses.fr/1998BOR11858.
Texto completo da fonteHugget, Alain. "Réseaux de neurones et algorithmes génétiques : application à la modélisation et à l'optimisation de séchoirs industriels". Bordeaux 1, 1998. http://www.theses.fr/1998BOR10679.
Texto completo da fonteChervier, Frédéric. "Modélisation des variations basse fréquence des émissions de COVB à l'aide d'un réseau de neurones artificiels". Paris 7, 2005. http://www.theses.fr/2005PA077179.
Texto completo da fonteTaouali, Wahiba, e Wahiba Taouali. "Modélisation de populations neuronales pour l'intégration visuo-motrice : Dynamiques et décisions". Phd thesis, Université de LORRAINE, 2012. http://tel.archives-ouvertes.fr/tel-00749924.
Texto completo da fonteBenoît-Marand, François. "Modélisation et identification des systèmes non linéaires par réseaux de neurones à temps continu : application à la modélisation des interfaces de diffusion non linéaires". Poitiers, 2007. http://www.theses.fr/2007POIT2274.
Texto completo da fonteThis thesis presents a new model for the identification of nonlinear systems : continuous time neural networks (RNTC). These structures employ networks of formal neurons to approach the nonlinear laws that control the system but, contrary to the neural networks models presented in the literature, our model deals the problem in continuous time. Whatever, through various applications, we show that the model allows us to identify various nonlinear processes with a high accuracy. Moreover, in using a model reduction stage, it is possible to revert, from the neural network model, to the characteristic values of the system. Finally, we indicate how to adapt the continuous time neural network model to the case of fractionnal systems and we consider the problem of identification of diffusive nonlinear interfaces. By introducing a new operator of fractional integration, and by integrating it into the continuous time neural network model, we show how to approach the temporal behavior of these particular systems