Literatura científica selecionada sobre o tema "Modeling of electronic processes"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Modeling of electronic processes".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Modeling of electronic processes"
Ristau, Detlev, e Henrik Ehlers. "Advanced control and modeling of deposition processes". Chinese Optics Letters 11, S1 (2013): S10203. http://dx.doi.org/10.3788/col201311.s10203.
Texto completo da fonteBelovod, K. A. "The modeling of processes for creating electronic learning tools". Scientific and Technical Information Processing 37, n.º 2 (abril de 2010): 137–42. http://dx.doi.org/10.3103/s0147688210020085.
Texto completo da fonteMadera, Alexander Georgievitch. "Modeling thermal feedback effect on thermal processes in electronic systems". Computer Research and Modeling 10, n.º 4 (agosto de 2018): 483–94. http://dx.doi.org/10.20537/2076-7633-2018-10-4-483-494.
Texto completo da fonteMadera, A. G. "Interval-stochastic thermal processes in electronic systems: Analysis and modeling". Journal of Engineering Thermophysics 26, n.º 1 (janeiro de 2017): 17–28. http://dx.doi.org/10.1134/s1810232817010039.
Texto completo da fonteMadera, A. G. "Interval-stochastic thermal processes in electronic systems: Modeling in practice". Journal of Engineering Thermophysics 26, n.º 1 (janeiro de 2017): 29–38. http://dx.doi.org/10.1134/s1810232817010040.
Texto completo da fonteBudanov, A. V., E. A. Tatokchin, G. I. Kotov e D. S. Sayko. "Math modeling of electronic processes and deep level ionization kinetic". Proceedings of the Voronezh State University of Engineering Technologies, n.º 2 (1 de janeiro de 2016): 78–86. http://dx.doi.org/10.20914/2310-1202-2016-2-78-86.
Texto completo da fonteKuhn, W. B., Xin He e M. Mojarradi. "Modeling spiral inductors in SOS processes". IEEE Transactions on Electron Devices 51, n.º 5 (maio de 2004): 677–83. http://dx.doi.org/10.1109/ted.2004.826868.
Texto completo da fontePetrushevskaya, A. A. "DIGITAL ELECTRONICS PRODUCTION MODELING AND PRODUCT QUALITY ASSURANCE". Issues of radio electronics, n.º 1 (20 de janeiro de 2019): 46–50. http://dx.doi.org/10.21778/2218-5453-2019-1-46-50.
Texto completo da fontePodoliak, O. O., V. A. Ovchinnikova, S. N. Selyahov, T. G. Kormin e A. V. Korejatov. "Optimization methods of assembly processes of defibrillation equipment". Ural Radio Engineering Journal 5, n.º 4 (2021): 410–31. http://dx.doi.org/10.15826/urej.2021.5.4.005.
Texto completo da fonteEremina, V. V., O. V. Zhilindina e E. A. Podolko. "MODELING THE ELECTRONIC CHARACTERISTICS OF ELECTRICAL CERAMICS. PART. II". Informatika i sistemy upravleniya, n.º 1 (2021): 66–74. http://dx.doi.org/10.22250/isu.2021.67.66-74.
Texto completo da fonteTeses / dissertações sobre o assunto "Modeling of electronic processes"
Gagliardi, Alessio. "Theoretical modeling and simulation of electron-phonon scattering processes in molecular electronic devices". [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=98556282X.
Texto completo da fonteQian, Zhiguang. "Computer experiments [electronic resource] : design, modeling and integration /". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11480.
Texto completo da fonteGanesan, Admanathan. "Modeling of distributed layouts for dynamic period cases". Thesis, Wichita State University, 2006. http://hdl.handle.net/10057/1482.
Texto completo da fonteThesis (M.S.)--Wichita State University, College of Engineering, Dept. of Industrial and Manufacturing Engineering.
Hontz, Eric Richard. "Electronic processes in organic optoelectronics : insights gained through modeling and magnetic field effects". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98794.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 185-232).
Organic photovoltaics (OPVs) and organic light-emitting diodes (LEDs) are organic optoelectronics offering a number of unique benefits that may play an important role in the future of clean energy generation and efficient energy consumption. In this thesis, we explore key electronic processes in OPVs and OLEDs, with a major focus on quantum-mechanical kinetic modeling of magnetic field effects (MFEs) that probe underlying subprocesses. Certain organics are capable of dividing excited states in a process termed singlet fission, which can increase the maximum theoretical efficiency of an OPV by a factor of nearly 1/3. The MFEs on photocurrent measurements from our collaborators are combined with theoretical models to determine optimal device architectures for singlet fission OPVs, allowing us to exceed the conventional limit of one electron per photon. We also use MFEs to determine the spin of charge transfer states most efficient at generating photocurrent and demonstrate microscopic insight into the mechanism of their diffusion, offering new design principles for the engineering of donor-acceptor interfaces in OPVs. Thermally activated delayed fluorescence (TADF) is becoming an increasingly important OLED technology that extracts light from non-emissive triplet states via reverse intersystem crossing (RISC) to the bright singlet state. We use MFEs to prove a rather surprising finding that in TADF materials composed of donor-acceptor bends, the electron-hole distance fluctuates as a function of time, resulting in spontaneous cycling between states that are advantageous to fluorescence at one moment and then advantageous to RISC at another. Combined with additional topics in the fields of metal organic frameworks and reaction pathfinding methods, the work in this thesis provides insight into how to achieve optimal performance in OPV and OLED devices, which may serve an important role in the future of our energy landscape.
by Eric Richard Hontz.
Ph. D. in Physical Chemistry
Cho, Hyun Cheol. "Dynamic Bayesian networks for online stochastic modeling". abstract and full text PDF (free order & download UNR users only), 2006. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3221394.
Texto completo da fonteTóth, G. (Géza). "Computer modeling supported fabrication processes for electronics applications". Doctoral thesis, University of Oulu, 2007. http://urn.fi/urn:isbn:9789514284717.
Texto completo da fonteShantaram, Sandeep Lall Pradeep. "Explicit finite element modeling in conjunction with digital image correlation based life prediction of lead-free electronics under shock-impact". Auburn, Ala, 2009. http://hdl.handle.net/10415/1894.
Texto completo da fonteEgorova, Dassia. "Modeling of ultrafast electron transfer processes multi-level Redfield theory and beyond /". [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=967134420.
Texto completo da fonteWang, Hong. "Numerical modelling of the tilt casting processes of titanium alumindes". Thesis, University of Greenwich, 2008. http://gala.gre.ac.uk/6336/.
Texto completo da fonteHwang, Jung Yoon. "Spatial stochastic processes for yield and reliability management with applications to nano electronics". Texas A&M University, 2004. http://hdl.handle.net/1969.1/1500.
Texto completo da fonteLivros sobre o assunto "Modeling of electronic processes"
Tennyson, Roderick C., e Arnold E. Kiv, eds. Computer Modelling of Electronic and Atomic Processes in Solids. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5662-2.
Texto completo da fonte1937-, Tennyson Roderick C., Kiv Arnold E, North Atlantic Treaty Organization. Scientific Affairs Division. e NATO Advanced Research Workshop on Computer Modelling of Electronic and Atomic Processes in Solids (1996 : Wrocław, Poland), eds. Computer modelling of electronic and atomic processes in solids. Dordrecht: Kluwer Academic, 1997.
Encontre o texto completo da fonteDimpsey, Robert Tod. Performance evaluation and modeling techniques for parallel processors. Urbana, Ill: Center for Reliable and High-Performance Computing, Coordinated Science Laboratory, College of Engineering, University of Illinois at Urbana-Champaign, 1992.
Encontre o texto completo da fonteUnited States. National Aeronautics and Space Administration., ed. Performance evaluation and modeling techniques for parallel processors. Urbana, Ill: Center for Reliable and High-Performance Computing, Coordinated Science Laboratory, College of Engineering, University of Illinois at Urbana-Champaign, 1992.
Encontre o texto completo da fonteZhao, Yaoyao (Fiona). Information Modeling for Interoperable Dimensional Metrology. London: Springer-Verlag London Limited, 2011.
Encontre o texto completo da fonteKhalid, Al-Begain, Heindl Armin e Telek Miklós, eds. Analytical and stochastic modeling techniques and applications: 15th international conference, ASMTA 2008, Nicosia, Cyprus, June 4-6, 2008 : proceedings. Berlin: Springer, 2008.
Encontre o texto completo da fonteInternational, Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits (5th 1994 Honolulu Hawaii). International Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits: NUPAD V : Hilton Hawaiian Village, Honolulu, HI June 5-6, 1994. New York: Institute of Electrical and Electronics Engineers, 1994.
Encontre o texto completo da fonteDavid, Hutchison. Analytical and Stochastic Modeling Techniques and Applications: 16th International Conference, ASMTA 2009, Madrid, Spain, June 9-12, 2009. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Encontre o texto completo da fonteTrindle, Carl. Electronic Structure Modeling. London: Taylor and Francis, 2008.
Encontre o texto completo da fonteIguchi, Manabu, e Olusegun J. Ilegbusi. Modeling Multiphase Materials Processes. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7479-2.
Texto completo da fonteCapítulos de livros sobre o assunto "Modeling of electronic processes"
Schürmann, Bernd. "Modeling Design Data and Design Processes in the PLAYOUT CAD Framework". In Current Issues in Electronic Modeling, 161–89. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1347-2_5.
Texto completo da fonteAlexandrova, Anastassia N. "Quantum Mechanical Insights into Biological Processes at the Electronic Level". In Computational Modeling of Biological Systems, 117–64. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-2146-7_6.
Texto completo da fonteShiktorov, P., V. Gružinskis, E. Starikov, L. Reggiani e L. Varani. "Hydrodynamic Modeling of Electronic Noise by the Transfer Impedance Method". In Simulation of Semiconductor Devices and Processes, 314–17. Vienna: Springer Vienna, 1995. http://dx.doi.org/10.1007/978-3-7091-6619-2_76.
Texto completo da fonteCrosta, Stefano, Jean-Christophe Pazzaglia e Hendrik Schöttle. "Modelling and Securing European Justice Workflows". In ISSE 2005 — Securing Electronic Business Processes, 412–21. Wiesbaden: Vieweg+Teubner Verlag, 2005. http://dx.doi.org/10.1007/978-3-322-85237-3_43.
Texto completo da fonteParilis, E. "Modeling Non-Metal Surface Damage Created by Multiply-Charged Ions". In Computer Modelling of Electronic and Atomic Processes in Solids, 107–13. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5662-2_11.
Texto completo da fonteLukatsky, D. B., e E. Rysiakiewicz-Pasek. "Modeling of Inhomogeneity in Solid Coatings Obtained from Water Suspensions". In Computer Modelling of Electronic and Atomic Processes in Solids, 69–77. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5662-2_7.
Texto completo da fonteChan, K. W., M. J. Teague, N. J. Schofield e J. I. Vette. "Modeling of Electron Time Variations in the Radiation Belts". In Quantitative Modeling of Magnetospheric Processes, 121–49. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm021p0121.
Texto completo da fonteKakarountas, Athanasios, e Vasileios Chioktour. "Degradation of Reliability of Digital Electronic Equipment Over Time and Redundant Hardware-based Solutions". In Statistical Modeling of Reliability Structures and Industrial Processes, 217–28. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003203124-13.
Texto completo da fonteHigbie, P. R., D. N. Baker, E. W. Hones e R. D. Belian. "Pitch Angle Distributions of >30 Kev Electrons at Geostationary Altitudes". In Quantitative Modeling of Magnetospheric Processes, 203–19. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm021p0203.
Texto completo da fonteFeldmann, K., e O. Meedt. "Recycling and Disassembly of Electronic Devices". In Life-Cycle Modelling for Innovative Products and Processes, 233–45. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-0-387-34981-7_20.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Modeling of electronic processes"
Zhuravleva, I. "RADIATION EFFECTS IN INTEGRATED CHIPS WHEN EXPOSED TO IONIZING RADIATION". In Modern aspects of modeling systems and processes. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2021. http://dx.doi.org/10.34220/mamsp_214-218.
Texto completo da fonteKADOCHNIKOV, I. N., e I. V. ARSENTIEV. "MODELING OF VIBRATION-ELECTRONIC-CHEMISTRY COUPLING IN NONEQUILIBRIUM AIR PLASMA UNDER SHOCK CONDITIONS". In NONEQUILIBRIUM PROCESSES. TORUS PRESS, 2018. http://dx.doi.org/10.30826/nepcap2018-1-02.
Texto completo da fonteKuc'ko, Pavel, V. Zolnikov, Svetlana Evdokimova, O. Oksyuta e Aleksey Platonov. "CURRENT STATE OF THE SPACE ELEMENT BASE". In Modern aspects of modeling systems and processes. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2021. http://dx.doi.org/10.34220/mamsp_264-269.
Texto completo da fonteMerzlov, V. S., A. Ch Khatagov e I. V. Kryzhanovskaya. "Modeling Electronic Processes in the Monotron Gap". In 2018 International Russian Automation Conference (RusAutoCon). IEEE, 2018. http://dx.doi.org/10.1109/rusautocon.2018.8501751.
Texto completo da fonteElmanov, Abbos, Sirojiddin Kengboyev, Nazirjon Safarov e Adham Norkobilov. "Modeling of Laser-Assisted Cutting of Thin-Walled Steel Gears". In International Electronic Conference on Processes, 146. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/proceedings2024105146.
Texto completo da fonteHa, Kim Thanh Vy, Tuan-Anh Nguyen, Quoc-Lan Nguyen, Van-Vinh Dang, Van-Han Dang, Hoang-Luan Van e Le-Na T. Pham. "Two-Phase Stefan Problem for the Modeling of Urea Prilling Tower". In International Electronic Conference on Processes. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/ecp2023-14745.
Texto completo da fonteMescheryakov, Sergey, Artem Groshev e Tatyana Skvortsova. "ANALYSIS OF EXISTING METHODS FOR MODELING THE IMPACT OF SPACE RADIATION ON THE ELECTRONIC COMPONENT BASE". In Modern aspects of modeling systems and processes. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2021. http://dx.doi.org/10.34220/mamsp_270-275.
Texto completo da fonteProvatas, Vasileios, Stavros Dapontis, Michalis Konsolakis e Dimitris Ipsakis. "Modeling and Control of Hydrogen Production Systems through Water Electrolysis and Res Power". In International Electronic Conference on Processes, 51. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/proceedings2024105051.
Texto completo da fonteOlguín-Rojas, José Arturo, Paulina Aguirre-Lara, Maria Mariana González Urrieta, José Miguel Téllez Zepeda, Fernando Cansino Jacome e Guadalupe del Carmen Rodriguez-Jimenes. "Modeling of the Fluidized Bed Drying Process of Pirul (Schinus molle L.) Leaves". In International Electronic Conference on Processes, 64. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/proceedings2024105064.
Texto completo da fonteEvdokimova, Svetlana, D. Bubenin e R. Lopatin. "ANALYSIS OF THE CAPABILITIES OF MODERN MEDICAL INFORMATION SYSTEMS". In Modern aspects of modeling systems and processes. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2021. http://dx.doi.org/10.34220/mamsp_31-37.
Texto completo da fonteRelatórios de organizações sobre o assunto "Modeling of electronic processes"
Chubenko, Oksana. Detailed Modeling of Physical Processes in Electron Sources for Accelerator Applications. Office of Scientific and Technical Information (OSTI), janeiro de 2019. http://dx.doi.org/10.2172/1575060.
Texto completo da fonteNewton, M. D., S. W. Feldberg e J. F. Smalley. Theory and computational modeling: Medium reorganization and donor/acceptor coupling in electron transfer processes. Office of Scientific and Technical Information (OSTI), março de 1998. http://dx.doi.org/10.2172/653946.
Texto completo da fonteModlo, Yevhenii O., Serhiy O. Semerikov, Stanislav L. Bondarevskyi, Stanislav T. Tolmachev, Oksana M. Markova e Pavlo P. Nechypurenko. Methods of using mobile Internet devices in the formation of the general scientific component of bachelor in electromechanics competency in modeling of technical objects. [б. в.], fevereiro de 2020. http://dx.doi.org/10.31812/123456789/3677.
Texto completo da fonteTichomirova, T. M., e A. G. Sukiasyan. Electronic textbook «Econometric Modeling». Ailamazyan Program Systems Institute of Russian Academy of Sciences, maio de 2024. http://dx.doi.org/10.12731/ofernio.2024.25333.
Texto completo da fonteSarma, Sankar D. Ultrafast Electronic Processes in Semiconductor Nanostructures. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2000. http://dx.doi.org/10.21236/ada384374.
Texto completo da fonteBuckmaster, John. Modeling of Physical Processes. Fort Belvoir, VA: Defense Technical Information Center, abril de 2002. http://dx.doi.org/10.21236/ada408985.
Texto completo da fonteRatcliff, Roger. Modeling Perceptual Decision Processes. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2014. http://dx.doi.org/10.21236/ada609771.
Texto completo da fonteBuchmaster. Modeling of Physical Processes. Fort Belvoir, VA: Defense Technical Information Center, maio de 1999. http://dx.doi.org/10.21236/ada384825.
Texto completo da fonteMacDiarmid, Alan G. Conducting Electronic Polymers by Non-Redox Processes. Fort Belvoir, VA: Defense Technical Information Center, junho de 1988. http://dx.doi.org/10.21236/ada204408.
Texto completo da fonteMacDiarmid, Alan G. Conducting Electronic Polymers by Non-Redox Processes. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1987. http://dx.doi.org/10.21236/ada205551.
Texto completo da fonte