Siga este link para ver outros tipos de publicações sobre o tema: Mmodelling and numerical simulation.

Artigos de revistas sobre o tema "Mmodelling and numerical simulation"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Mmodelling and numerical simulation".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

JACIMOVIC, Nenad, Takashi HOSODA, Kiyoshi KISHIDA e Marko IVETIC. "NUMERICAL SIMULATION OF CONTAMINANT NUMERICAL SIMULATION OF CONTAMINANT". PROCEEDINGS OF HYDRAULIC ENGINEERING 51 (2007): 13–18. http://dx.doi.org/10.2208/prohe.51.13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

MIYAUCHI, Toshio. "Numerical Simulation of Combustion". Tetsu-to-Hagane 80, n.º 12 (1994): 871–77. http://dx.doi.org/10.2355/tetsutohagane1955.80.12_871.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Lima Júnior, Édio Pereira, Wendel Rodrigues Miranda, André Luiz Tenório Rezende e Arnaldo Ferreira. "Numerical Simulation of Impact". International Journal of Innovative Research in Engineering & Management 5, n.º 1 (janeiro de 2018): 24–29. http://dx.doi.org/10.21276/ijirem.2018.5.1.6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Sheshenin, S. V., e S. A. Margaryan. "TIRE 3D NUMERICAL SIMULATION". International Journal for Computational Civil and Structural Engineering 1, n.º 1 (2005): 33–42. http://dx.doi.org/10.1615/intjcompcivstructeng.v1.i1.40.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

SHUTO, Nobuo. "Numerical simulation of Tsunamis." Doboku Gakkai Ronbunshu, n.º 411 (1989): 13–23. http://dx.doi.org/10.2208/jscej.1989.411_13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Kanak, Katharine M., Jerry M. Straka e David M. Schultz. "Numerical Simulation of Mammatus". Journal of the Atmospheric Sciences 65, n.º 5 (1 de maio de 2008): 1606–21. http://dx.doi.org/10.1175/2007jas2469.1.

Texto completo da fonte
Resumo:
Abstract Mammatus are hanging lobes on the underside of clouds. Although many different mechanisms have been proposed for their formation, none have been rigorously tested. In this study, three-dimensional numerical simulations of mammatus on a portion of a cumulonimbus cirruslike anvil are performed to explore some of the dynamic and microphysical factors that affect mammatus formation and evolution. Initial conditions for the simulations are derived from observed thermodynamic soundings. Five observed soundings are chosen—four were associated with visually observed mammatus and one was not. Initial microphysical conditions in the simulations are consistent with in situ observations of cumulonimbus anvil and mammatus. Mammatus form in the four model simulations initialized with the soundings for which mammatus were observed, whereas mammatus do not form in the model simulation initialized with the no-mammatus sounding. Characteristics of the modeled mammatus compare favorably to previously published mammatus observations. Three hypothesized formation mechanisms for mammatus are tested: cloud-base detrainment instability, fallout of hydrometeors from cloud base, and sublimation of ice hydrometeors below cloud base. For the parameters considered, cloud-base detrainment instability is a necessary, but not sufficient, condition for mammatus formation. Mammatus can form without fallout, but not without sublimation. All the observed soundings for which mammatus were observed feature a dry-adiabatic subcloud layer of varying depth with low relative humidity, which supports the importance of sublimation to mammatus formation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Isbăşoiu, Eliza Consuela. "Numerical Modeling and Simulation". Advanced Science Letters 19, n.º 1 (1 de janeiro de 2013): 166–69. http://dx.doi.org/10.1166/asl.2013.4663.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

UEMATSU, Takahiko. "Numerical simulation of snowdrift." Journal of the Japanese Society of Snow and Ice 54, n.º 3 (1992): 287–89. http://dx.doi.org/10.5331/seppyo.54.287.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Joly, Patrick, Leïla Rhaouti e Antoine Chaigne. "Numerical simulation of timpani". Journal of the Acoustical Society of America 105, n.º 2 (fevereiro de 1999): 1125. http://dx.doi.org/10.1121/1.425250.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Dupuy, Thomas, e Chainarong Srikunwong. "Resistance Welding Numerical Simulation". Revue Européenne des Éléments Finis 13, n.º 3-4 (janeiro de 2004): 313–41. http://dx.doi.org/10.3166/reef.13.313-341.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Claus, R. W., A. L. Evans, J. K. Lylte e L. D. Nichols. "Numerical Propulsion System Simulation". Computing Systems in Engineering 2, n.º 4 (janeiro de 1991): 357–64. http://dx.doi.org/10.1016/0956-0521(91)90003-n.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Zavaliangos, A., e A. Lawley. "Numerical simulation of thixoforming". Journal of Materials Engineering and Performance 4, n.º 1 (fevereiro de 1995): 40–47. http://dx.doi.org/10.1007/bf02682703.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Schnack, Dalton D. "Numerical simulation of plasmas". Computer Physics Communications 42, n.º 3 (novembro de 1986): 441–42. http://dx.doi.org/10.1016/0010-4655(86)90012-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Cooke, Charlie H., e Kevin S. Fansler. "Numerical simulation of silencers". International Journal for Numerical Methods in Fluids 9, n.º 3 (março de 1989): 363–68. http://dx.doi.org/10.1002/fld.1650090309.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Schuetz, S., e M. Piesche. "Numerical Simulation of Hydrocyclones". Chemie Ingenieur Technik 73, n.º 6 (junho de 2001): 640. http://dx.doi.org/10.1002/1522-2640(200106)73:6<640::aid-cite6403333>3.0.co;2-s.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Lançon, Frédéric, e Luc Billard. "Numerical simulation of quasicrystals". Journal of Non-Crystalline Solids 117-118 (fevereiro de 1990): 836–39. http://dx.doi.org/10.1016/0022-3093(90)90658-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Tsujimoto, Koichi, Toshihiko Shakouchi, Shuji Sasazaki e Toshitake Ando. "Direct Numerical Simulation of Jet Mixing Control Using Combined Jets(Numerical Simulation)". Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 725–30. http://dx.doi.org/10.1299/jsmeicjwsf.2005.725.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Yang, Xiao-long, e Song Fu. "Study of numerical errors in direct numerical simulation and large eddy simulation". Applied Mathematics and Mechanics 29, n.º 7 (julho de 2008): 871–80. http://dx.doi.org/10.1007/s10483-008-0705-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Shi, Yongchun, Zhifeng Xiao, Zhenhua Wang, Xiangdong Liu e Deyong Yang. "Numerical Simulation on Superheated Steam Fluidized Bed Drying: II. Experiments and Numerical Simulation". Drying Technology 29, n.º 11 (11 de julho de 2011): 1332–42. http://dx.doi.org/10.1080/07373937.2011.592050.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Wei, Xiao Hua, e Bai Yang Lou. "Numerical Simulation Research of Micro-Injection Molding Simulation". Applied Mechanics and Materials 55-57 (maio de 2011): 1511–17. http://dx.doi.org/10.4028/www.scientific.net/amm.55-57.1511.

Texto completo da fonte
Resumo:
According to the basic theory and process of conventional injection molding, using the CAE software, numerical simulation research of the injection molding characteristic for micro thin-wall plastic parts are put forward. The effects of process parameters (melt temperature, mold temperature, injection pressure, injection rate) on molding characteristic of micro thin-wall plastic parts are discussed by single factor method, compare the significance of each factors.The simulation results showed that volume could be improved with the increase of melt temperature ,molding temperature, injection pressure and injection rate.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

YUU, Shinichi, e Toshihiko UMEKAGE. "Numerical Simulation of Granular Flow". Tetsu-to-Hagane 81, n.º 11 (1995): N556—N563. http://dx.doi.org/10.2355/tetsutohagane1955.81.11_n556.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Wakisaka, Tomoyuki. "Numerical Simulation of Engine Combustion". Journal of The Japan Institute of Marine Engineering 44, n.º 3 (2009): 375–80. http://dx.doi.org/10.5988/jime.44.375.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Hori, Tsukasa, e Jiro Senda. "Numerical Simulation of Engine Combustion". Journal of The Japan Institute of Marine Engineering 44, n.º 3 (2009): 381–86. http://dx.doi.org/10.5988/jime.44.381.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Takagi, Masahide. "Fuel Spray - Numerical Simulation Modeling". Journal of The Japan Institute of Marine Engineering 44, n.º 3 (2009): 387–92. http://dx.doi.org/10.5988/jime.44.387.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Mismar, Mai. "Numerical Simulation of Maxwell's Equations". IOSR Journal of Engineering 7, n.º 03 (março de 2017): 01–10. http://dx.doi.org/10.9790/30210-703010110.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Winterfeld, P. H., e D. E. Schroeder. "Numerical Simulation of Gravel Packing". SPE Production Engineering 7, n.º 03 (1 de agosto de 1992): 285–90. http://dx.doi.org/10.2118/19753-pa.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Pei, Xi, Min Xu e Dong Guo. "Aeroelastic-Acoustics Numerical Simulation Research". Applied Mechanics and Materials 226-228 (novembro de 2012): 500–504. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.500.

Texto completo da fonte
Resumo:
The generation of aerodynamic noise of aircraft in flight is due to dynamical system and aerodynamic .The response of aircraft subjected to High acoustic loads and aerodynamic loads can produce fatigue and damage. In this paper a new Aeroelastic- Acoustics which adds acoustic loads in aeroelastic is presented. The emphasis of the study is the discipline of displacement and load of the flexible structure under the unsteady aerodynamic, inertial, elastic and aero-acoustic. The CFD/CSD/CAA coupling is used to simulate rockets cabin. Sound generated by a rocker is predicted numerically from a Large Eddy simulation (LES) of unsteady flow field. The Lighthill acoustic analogy is used to model the propagation of sound. The structural response of rocket cabin was given. The boundary-layer transition on the pressure side of the cabin is visualized, by plotting to better illustrate the essential interaction between fluctuating pressure and structure.CFD/CSD/CAA coupling compute method is validated in low and middle frequency.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

TOMIYAMA, Kengo, Toshitsugu HARA, Kazuyoshi SUZUKI e Tsutomu SHODOJI. "Numerical Simulation of Soliton Propagation". Journal of the Visualization Society of Japan 15, Supplement1 (1995): 79–80. http://dx.doi.org/10.3154/jvs.15.supplement1_79.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Panchenko, S. P. "NUMERICAL SIMULATION OF VISCOELASTIC MATERIALS". Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, n.º 5(53) (24 de novembro de 2014): 157. http://dx.doi.org/10.15802/stp2014/30811.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Ohnaka, Itsuo. "Numerical Simulation of Materials Processing." Materia Japan 36, n.º 7 (1997): 723–30. http://dx.doi.org/10.2320/materia.36.723.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Zhang, Hong Shuang. "Numerical Simulation of Riveting Process". Applied Mechanics and Materials 34-35 (outubro de 2010): 641–45. http://dx.doi.org/10.4028/www.scientific.net/amm.34-35.641.

Texto completo da fonte
Resumo:
In order to fully understanding the distribution of residual stress after riveting and the relationship between residual stress and riveting process parameters during riveting, Finite Element Method was used to establish a riveting model. Quasi-static method to solve the convergence difficulties was adopted in riveting process. The riveting process was divided into six stages according to the stress versus time curves. The relationship of residual stress with rivet length and rivet hole clearance were established. The results show numerical simulation is effective for riveting process and can make a construction for the practical riveting.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Niezgoda, Tadeusz, J. Malachowski e Marek Boniecki. "Numerical Simulation of Alumina Fracture". Key Engineering Materials 132-136 (abril de 1997): 690–93. http://dx.doi.org/10.4028/www.scientific.net/kem.132-136.690.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Gladbach, Katharina, Antonio Delgado e Cornelia Rauh. "Numerical Simulation of Foaming Processes". World Journal of Mechanics 07, n.º 11 (2017): 297–322. http://dx.doi.org/10.4236/wjm.2017.711024.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Ariffin, Shahrul A. B., U. Hashim e Tijjani Adam. "Numerical Simulation of Microfluidic Separators". Advanced Materials Research 795 (setembro de 2013): 459–63. http://dx.doi.org/10.4028/www.scientific.net/amr.795.459.

Texto completo da fonte
Resumo:
Microfluidic devices present a powerful platform for working with living cells and even gases. Parameter such as the length and volume scales of these devices in miniaturize system makes it possible to develops and perform detailed analyses with several advantages. The objective of this project is to do a design of 1μm microfluidic separator device that consist the microchannel. Furthermore, another objective is to understand the fundamental physical processes of fluid flow in these devices and to predict their behavior and every method using in the simulation of COMSOL Multiphysics 3.5 software will be elaborate in numerical simulation technique section. Finally, result from the simulation such as concentration, fluidic flow pressure and velocity field will be observed and explained in the result section.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Kadonaga, Masami, Tomomi Katoh e Tomoko Takahashi. "Numerical Simulation of Separating Discharge". IEEJ Transactions on Fundamentals and Materials 123, n.º 5 (2003): 490–97. http://dx.doi.org/10.1541/ieejfms.123.490.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Liao Zhou, 廖周, 邱琪 Qiu Qi e 张雨东 Zhang Yudong. "Numerical Simulation of Segmented Telescope". Acta Optica Sinica 34, n.º 7 (2014): 0722002. http://dx.doi.org/10.3788/aos201434.0722002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Kilin, A. A. "Numerical simulation of multiparticle systems". Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, n.º 3 (setembro de 2009): 135–46. http://dx.doi.org/10.20537/vm090312.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Liu, Ming Qin, e Yu Ling Liu. "Numerical Simulation of Hydraulic Jump". Advanced Materials Research 374-377 (outubro de 2011): 643–46. http://dx.doi.org/10.4028/www.scientific.net/amr.374-377.643.

Texto completo da fonte
Resumo:
This paper is concerned with a mathematical model for numerical simulation of 2D flow accompanied with a hydraulic jump. The governing water equations are solved by the MacCormack’s predictor-corrector technique. The mathematical model is used to numerically predict 2D hydraulic jump in a rectangular open channel. The comparison and the analysis show that the proposed method is accurate, reliable and effective in simulation of hydraulic jump flows.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Nakaza, Eizo, Tsunakiyo Iribe e Muhammad Abdur Rouf. "NUMERICAL SIMULATION OF TSUNAMI CURRENTS". Coastal Engineering Proceedings 1, n.º 32 (1 de fevereiro de 2011): 6. http://dx.doi.org/10.9753/icce.v32.currents.6.

Texto completo da fonte
Resumo:
The paper aims to simulate Tsunami currents around moving and fixed structures using the moving-particle semi-implicit method. An open channel with four different sets of structures is employed in the numerical model. The simulation results for the case with one structure indicate that the flow around the moving structure is faster than that around the fixed structure. The flow becomes more complex for cases with additional structures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Barykina, Olga, Igor Fomenko e Oleg Zerkal. "Numerical simulation of stress distribution". E3S Web of Conferences 264 (2021): 01032. http://dx.doi.org/10.1051/e3sconf/202126401032.

Texto completo da fonte
Resumo:
The Rogun hydropower plant is being constructed in Tajikistan, in the valley of the Vakhsh River. The construction site is located in a narrow gorge separating the Vakhsh and Surkh-Ku ridges. Most of the hydroelectric complex structures are located within a single tectonic block, which is bounded by two faults - Ionakhsh and Gulizindan, which are proximal to the Vakhsh regional fault. The study of stress distribution around the diversion tunnel was carried out by numerical simulation, which aimed to identify the stress distribution in the strongly dislocated heterogeneous rock massif before and after the tunnel creation. The underground cavity of the tunnel is a significant factor influencing the natural stress field of the rock massif. An area with critical values of the strength coefficient in the working roof, caused by the presence of a weak layer of Lower Cretaceous siltstones, is revealed in the tunnel location. The size of this area reaches two tunnel diameters. The change of stresses and their concentration around the underground working can cause deformations in the roof (collapse or rock bumps).
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Yin, Rui, Heng Liu e Zhi-Yuan He. "Numerical Simulation of Hydrofoil Cavitation". Journal of Physics: Conference Series 2206, n.º 1 (1 de fevereiro de 2022): 012002. http://dx.doi.org/10.1088/1742-6596/2206/1/012002.

Texto completo da fonte
Resumo:
Abstract A contrastive analysis was conducted on the lift and drag performance, pressure and gas-phase volume fraction of NACA4412 hydrofoil under different conditions of the cavitation number and the angle of attack based on CFD. The results are obtained as follows: after hydrofoil cavitation, the lift coefficient decreased and the drag coefficient increased with the decrease of the cavitation number, and supercavitation can reduce the drag coefficient locally; the pressure difference between the upper and lower surfaces of the hydrofoil decreased and the cavitation zone on the upper surface became larger with the decrease of the cavitation number; the cavitation zone of the hydrofoil originated from the leading edge; the length of the cavitation zone under large cavitation numbers first increased and then decreased with the increase of the angle of attack, and the zone moved towards the leading edge; the cavitation zone under small cavitation numbers covered almost the entire upper surface of the hydrofoil.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

FUKUDA, Yutaka, e Katsuya NAGAYAMA. "Numerical simulation of skin cracking". Proceedings of Mechanical Engineering Congress, Japan 2021 (2021): J023–12. http://dx.doi.org/10.1299/jsmemecj.2021.j023-12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Srinivas, G., e Srinivasa Rao Potti. "Numerical Simulation of Rocket Nozzle". Advanced Materials Research 984-985 (julho de 2014): 1210–13. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.1210.

Texto completo da fonte
Resumo:
The vent or opening is called nozzle. The objectives are to measure the flow rates and pressure distributions within the converging and diverging nozzle under different exit and inlet pressure ratios. Analytic results will be used to contrast the measurements for the pressure and normal shock locations. In this paper computational Fluid Dynamics (CFD) Analysis of various performance parameters like static pressure, the Mach number, intensity of turbulence, the area ratio are studied in detail for a rocket nozzle from Inlet to exit by using Ansys Fluent software. From the public literature survey the geometry co-ordinates are taken. The throat diameter and exit and diameter are same for all nozzles. After the simulation the results revealed that the divergence angle varies the mach number and other performance parameters also varies. For smaller nozzle angle the discharge coefficient increases with increasing pressure ratio until the choked condition is reached for varying the divergence angle.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Dietiker, Jean-Francois, e Klaus A. Hoffmann. "Numerical Simulation of Magnetohydrodynamic Flows". Journal of Spacecraft and Rockets 41, n.º 4 (julho de 2004): 592–602. http://dx.doi.org/10.2514/1.11937.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Wang, Yan Dong, e Hong Guang Jia. "Numerical Simulation of Laval Nozzle". Applied Mechanics and Materials 397-400 (setembro de 2013): 266–69. http://dx.doi.org/10.4028/www.scientific.net/amm.397-400.266.

Texto completo da fonte
Resumo:
Laval nozzle is the commonly used device in rocket engine and aero engine. this paper, the numerical model is derived. The convergent section subsonic flow and divergent section hypersonic flow are simulated in dimensionless method. Reverting the dimension, the result can be seen that the analytical solution, the CFX simulation solution and the numerical are in uniform.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

TANAKA, Hajime, e Michio TATENO. "Numerical Simulation of Colloidal Suspension". Oleoscience 19, n.º 11 (2019): 455–60. http://dx.doi.org/10.5650/oleoscience.19.455.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Hijikata, Kunio. "Numerical Simulation of Thermofluid Phenomena." Journal of the Japan Welding Society 60, n.º 7 (1991): 576–80. http://dx.doi.org/10.2207/qjjws1943.60.576.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Qin, Li, Jun Kuo Li e Qiang Fu. "ACSR Strands Stress Numerical Simulation". Applied Mechanics and Materials 256-259 (dezembro de 2012): 710–13. http://dx.doi.org/10.4028/www.scientific.net/amm.256-259.710.

Texto completo da fonte
Resumo:
As an important carrier of electricity power, ACSR is a principal part of power system and is directly related to the transmission line reliability and safety. ACSR strands stress analysis is the foundation of studying ACSR mechanical properties. In this paper, finite element method is used to analysis the Acsr strands stress. The structural characteristics of Acsr is considered and the complete Acsr model is created by ansys to simulate the distribution of stress and strain under appropriate boundary conditions. The Conclusions are drawn that both the state of strands stress and the stress concentration level are related with its structural properties. The strands of out layers bears more stress and firstly comes into plastic strain. The results of the research is helpful to the further study of ACSR strength and conductor fatigue life.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Souza, J. A., J. V. C. Vargas, O. F. Von Meien e W. Martignoni. "NUMERICAL SIMULATION OF FCC RISERS". Revista de Engenharia Térmica 2, n.º 2 (31 de dezembro de 2003): 17. http://dx.doi.org/10.5380/reterm.v2i2.3479.

Texto completo da fonte
Resumo:
The catalytic cracking of hydrocarbons in a FCC riser is a very complex physical and chemical phenomenon, which combines a three-dimensional, three-phase fluid flow with a heterogeneous catalytic cracking kinetics. Several researchers have carried out the modeling of the problem in different ways. Depending on the main objective of the modeling it is possible to find in the literature very simple models while in other cases, when more accurate results are necessary, each equipment is normally treated separately and a set of differential and algebraic equations is written for the problem. The riser reactor is probably the most important equipment in a FCC plant. All cracking reactions and fuel formation occur during the short time (about 4-5s) that the gas oil stays in contact with the catalyst inside the riser. This work presents a simplified model to predict the, temperature and concentrations in a FCC riser reactor. A bi-dimensional fluid flow field combined with a 6 lumps kinetic model and two energy equations (catalyst and gas oil) are used to simulate the gas oil cracking process. Based on the velocity, temperature and concentration fields, it is intended, on a next step, to use the second law of thermodynamic to perform a thermodynamic optimization of the system.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Cummings, Russell M. "Numerical Simulation of Hypersonic Flows". Journal of Spacecraft and Rockets 52, n.º 1 (janeiro de 2015): 15–16. http://dx.doi.org/10.2514/1.a33030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia