Literatura científica selecionada sobre o tema "Mmodelling and numerical simulation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Mmodelling and numerical simulation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Mmodelling and numerical simulation"
JACIMOVIC, Nenad, Takashi HOSODA, Kiyoshi KISHIDA e Marko IVETIC. "NUMERICAL SIMULATION OF CONTAMINANT NUMERICAL SIMULATION OF CONTAMINANT". PROCEEDINGS OF HYDRAULIC ENGINEERING 51 (2007): 13–18. http://dx.doi.org/10.2208/prohe.51.13.
Texto completo da fonteMIYAUCHI, Toshio. "Numerical Simulation of Combustion". Tetsu-to-Hagane 80, n.º 12 (1994): 871–77. http://dx.doi.org/10.2355/tetsutohagane1955.80.12_871.
Texto completo da fonteLima Júnior, Édio Pereira, Wendel Rodrigues Miranda, André Luiz Tenório Rezende e Arnaldo Ferreira. "Numerical Simulation of Impact". International Journal of Innovative Research in Engineering & Management 5, n.º 1 (janeiro de 2018): 24–29. http://dx.doi.org/10.21276/ijirem.2018.5.1.6.
Texto completo da fonteSheshenin, S. V., e S. A. Margaryan. "TIRE 3D NUMERICAL SIMULATION". International Journal for Computational Civil and Structural Engineering 1, n.º 1 (2005): 33–42. http://dx.doi.org/10.1615/intjcompcivstructeng.v1.i1.40.
Texto completo da fonteSHUTO, Nobuo. "Numerical simulation of Tsunamis." Doboku Gakkai Ronbunshu, n.º 411 (1989): 13–23. http://dx.doi.org/10.2208/jscej.1989.411_13.
Texto completo da fonteKanak, Katharine M., Jerry M. Straka e David M. Schultz. "Numerical Simulation of Mammatus". Journal of the Atmospheric Sciences 65, n.º 5 (1 de maio de 2008): 1606–21. http://dx.doi.org/10.1175/2007jas2469.1.
Texto completo da fonteIsbăşoiu, Eliza Consuela. "Numerical Modeling and Simulation". Advanced Science Letters 19, n.º 1 (1 de janeiro de 2013): 166–69. http://dx.doi.org/10.1166/asl.2013.4663.
Texto completo da fonteUEMATSU, Takahiko. "Numerical simulation of snowdrift." Journal of the Japanese Society of Snow and Ice 54, n.º 3 (1992): 287–89. http://dx.doi.org/10.5331/seppyo.54.287.
Texto completo da fonteJoly, Patrick, Leïla Rhaouti e Antoine Chaigne. "Numerical simulation of timpani". Journal of the Acoustical Society of America 105, n.º 2 (fevereiro de 1999): 1125. http://dx.doi.org/10.1121/1.425250.
Texto completo da fonteDupuy, Thomas, e Chainarong Srikunwong. "Resistance Welding Numerical Simulation". Revue Européenne des Éléments Finis 13, n.º 3-4 (janeiro de 2004): 313–41. http://dx.doi.org/10.3166/reef.13.313-341.
Texto completo da fonteTeses / dissertações sobre o assunto "Mmodelling and numerical simulation"
Pannetier, Valentin. "Simulations numériques standardisées de dispositifs de stimulation électrique cardiaque". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0352.
Texto completo da fonteCardiovascular diseases are the world’s leading cause of death, responsible for around 32% of all deaths in 2019, according to the World Health Organization (WHO). Faced with these pathologies, medical research is making constant progress to develop ever more effective treatments and devices. Among these innovations, implantable pacemakers play a crucial role in the treatment of cardiac rhythm disorders, intervening directly on the heart in the event of malfunction. Despite, despite their importance, the development of these technologies remains slow and costly. It often takes almost a decade from early prototyping to market launch, delaying their impact on human lives. This thesis is part of the European collaborative project SimCardioTest (EU H2020), which aims to accelerate the adoption of numerical tools for the certification of drugs and medical devices, such as implantable pacemakers. One of the main goals of the project is to integrate numerical simulations in the form of in silico clinical trials on a standardized web plateform in oirder to speed up thecertification process. During of this thesis, several mathematical models were developed and analyzed, ranging from generic three-dimensional models to simplified models with no spatial dimension. All these models include a electrical circuit inspired by a commercial pacemaker, contact models representing the ionic layers on electrode surfaces as equivalent electrical circuits, and cardiac tissue models with or without spatial propagation of cardiac action potentials. The credibility of these models is assessed through comparisons with animal experiments conducted during the thesis, with the aim of demonstrating their ability to reproduce realistic cardiac stimulations. These comparisons are based mainly on the voltages measured by pacemakers and on the study of threshold curves, also known as Lapicque curves. These curves, widely used clinically to adjust pacemakers, establish the relationship between stimulation duration and amplitude required to induce an effective cardiac contraction. In particular, they enable pacemaker settings to be optimized through individual customization, thereby minimizing energy consumption, maximizing device life, and therefore improving patient’s life quality. The adoption of simplified dimensionless models is an valuable strategic step in this thesis. Unlike spatial models, which are very costly to solve numerically, these models are simpler to solve and have enabled several parametric studies to be carried out, in particular to perform calibration using experimental data. Additional sensitivity studies, both local and global, were also carried out to analyze the influence and relevance of the parameters in the developed models
Amphlett, Jonathan Lee. "Numerical simulation of microelectrodes". Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341628.
Texto completo da fonteEvensberget, Dag Frohde. "Numerical Simulation of Nonholonomic Dynamics". Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9484.
Texto completo da fonteWe study the numerical integration of nonholonomic problems. The problems are formulated using Lagrangian and Hamiltonian mechanics. We review briefly the theoretical concepts used in geometric mechanics. We reconstruct two nonholonomic variational integrators from the monograph of Monforte. We also construct two one-step integrators based on a combination of the continuous Legendre transform and the discrete Legendre transform from an article by Marsden and West. Inintially these integrators display promising behavior, but they turn out to be unstable. The variational integrators are compared with a classical Runge-Kutta method. We compare the methods on three nonholonomic systems: The nonholonomic particle from the monograph of Monforte, the nonholonomic system of particles from an article by McLachlan and Perlmutter, and a variation of the Chaplygin sleigh from Bloch.
Uddholm, Per. "Numerical Simulation of Flame Propagation". Thesis, Uppsala University, Department of Information Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-98325.
Texto completo da fonteThe effects of the temperature and length, of the preheat zone, on the deflagration to detonation transition are investigated through numerical simulation. The Navier-Stokes equations, with a reaction term, are solved in one dimension. The time integration is a one-dimensional adaptation of an existing two-dimensional finite volume method code. An iterative scheme, based on an overlap integral, is developed for the determination of the deflagration to detonation transition. The code is tested in a number of cases, where the analytical solution (to the Euler equations) is known. The location of the deflagration to detonation transition is displayed graphically through the preheat zone temperature as a function of the fuel mixture temperature, for fixed exhaust gas temperature and with the preheat zone length as a parameter. The evolution of the deflagration to detonation transition is investigated for an initial state well within the regime where the deflagration to detonation transition occurs. Graphs displaying the temporal evolution of pressure, temperature, reaction rate, and fuel mass fraction are presented. Finally, a method for estimating the flame velocity during the deflagration and detonation phases, as well as the flame acceleration during the intermediate phase, is developed.
Karaismail, Ertan. "Numerical Simulation Of Radiating Flows". Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606452/index.pdf.
Texto completo da fonteRiljak, Stanislav. "Numerical simulation of shape rolling". Licentiate thesis, Stockholm, 2006. http://www.diva-portal.org/kth/theses/abstract.xsql?dbid=3963.
Texto completo da fonteAlhajraf, Salem. "Numerical simulation of drifting sand". Thesis, Cranfield University, 2000. http://hdl.handle.net/1826/3502.
Texto completo da fonteMatallah, H. "Numerical simulation of viscoelastic flows". Thesis, Swansea University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.638026.
Texto completo da fonteJiang, Long. "Numerical simulation of urban flooding". Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.504497.
Texto completo da fonteKovacs, Endre. "Numerical simulation of magnetic nanoparticles". Thesis, Loughborough University, 2005. https://dspace.lboro.ac.uk/2134/7742.
Texto completo da fonteLivros sobre o assunto "Mmodelling and numerical simulation"
Choobbasti, A. Janalizadeh. Numerical simulation of liquefaction. Manchester: UMIST, 1997.
Encontre o texto completo da fonteHirschel, Ernst Heinrich, ed. Numerical Flow Simulation II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44567-8.
Texto completo da fonteHirschel, Ernst Heinrich, ed. Numerical Flow Simulation III. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45693-3.
Texto completo da fonteHan, Xu, e Jie Liu. Numerical Simulation-based Design. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-10-3090-1.
Texto completo da fonteBeer, Gernot, ed. Numerical Simulation in Tunnelling. Vienna: Springer Vienna, 2003. http://dx.doi.org/10.1007/978-3-7091-6099-2.
Texto completo da fonteUrban, Karsten. Wavelets in Numerical Simulation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56002-6.
Texto completo da fonteHirschel, Ernst Heinrich, ed. Numerical Flow Simulation I. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-540-44437-4.
Texto completo da fonteDnestrovskii, Yuri N., e Dimitri P. Kostomarov. Numerical Simulation of Plasmas. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82592-7.
Texto completo da fonteHirschel, Ernst Heinrich, ed. Numerical Flow Simulation I. Wiesbaden: Vieweg+Teubner Verlag, 1998. http://dx.doi.org/10.1007/978-3-663-10916-7.
Texto completo da fonteP, Colombo Simone, e Rizzo Christian L, eds. Numerical simulation research progress. New York: Nova Science Publishers, 2008.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Mmodelling and numerical simulation"
Li, Tatsien, Yongji Tan, Zhijie Cai, Wei Chen e Jingnong Wang. "Numerical Simulation". In SpringerBriefs in Mathematics, 47–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41425-1_5.
Texto completo da fonteBaniotopoulos, C. C. "Numerical Simulation". In Semi-Rigid Joints in Structural Steelwork, 289–347. Vienna: Springer Vienna, 2000. http://dx.doi.org/10.1007/978-3-7091-2478-9_5.
Texto completo da fonteGross, Dietmar, Werner Hauger, Jörg Schröder, Wolfgang A. Wall e Sanjay Govindjee. "Numerical Simulation". In Engineering Mechanics 3, 317–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14019-8_7.
Texto completo da fonteEnns, Richard H., e George C. McGuire. "Numerical Simulation". In Nonlinear Physics with Mathematica for Scientists and Engineers, 451–90. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-0211-0_11.
Texto completo da fonteAntipov, Sergey A. "Numerical Simulation". In Fast Transverse Beam Instability Caused by Electron Cloud Trapped in Combined Function Magnets, 51–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02408-6_4.
Texto completo da fonteGross, Dietmar, Werner Hauger, Jörg Schröder, Wolfgang A. Wall e Sanjay Govindjee. "Numerical Simulation". In Engineering Mechanics 3, 323–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53712-7_7.
Texto completo da fonteEnns, Richard H., e George McGuire. "Numerical Simulation". In Nonlinear Physics with Maple for Scientists and Engineers, 317–44. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4684-0032-8_10.
Texto completo da fonteAzevedo, António C., Fernando A. N. Silva, João M. P. Q. Delgado e Isaque Lira. "Numerical Simulation". In Concrete Structures Deteriorated by Delayed Ettringite Formation and Alkali-Silica Reactions, 45–57. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12267-5_5.
Texto completo da fonteAkhavan-Safar, Alireza, Eduardo A. S. Marques, Ricardo J. C. Carbas e Lucas F. M. da Silva. "Numerical Simulation". In Cohesive Zone Modelling for Fatigue Life Analysis of Adhesive Joints, 67–88. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93142-1_4.
Texto completo da fonteEnns, Richard H., e George C. McGuire. "Numerical Simulation". In Nonlinear Physics with Maple for Scientists and Engineers, 437–72. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1322-2_11.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Mmodelling and numerical simulation"
Cenedese, Antonio, P. Monti e M. Sallusti. "PIV: a numerical simulation". In Laser Anemometry: Advances and Applications--Fifth International Conference, editado por J. M. Bessem, R. Booij, H. W. H. E. Godefroy, P. J. de Groot, K. K. Prasad, F. F. M. de Mul e E. J. Nijhof. SPIE, 1993. http://dx.doi.org/10.1117/12.150542.
Texto completo da fonte"Theoretical investigation, numerical simulation". In 2008 4th International Conference on Ultrawideband and Ultrashort Impulse Signals. IEEE, 2008. http://dx.doi.org/10.1109/uwbus.2008.4669401.
Texto completo da fonte"Theoretical investigation, numerical simulation". In 2016 8th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS). IEEE, 2016. http://dx.doi.org/10.1109/uwbusis.2016.7724150.
Texto completo da fonteFranke, H. G., A. Olmes, E. Bansch, H. Lubatschowski, G. Dziuk e W. Ertmer. "Numerical Simulation of Infrared-Photoablation". In Proceedings of European Meeting on Lasers and Electro-Optics. IEEE, 1996. http://dx.doi.org/10.1109/cleoe.1996.562500.
Texto completo da fonteSalcudean, Martha Eva, e Z. Abdullah. "NUMERICAL SIMULATION OF CASTING PROCESSES". In International Heat Transfer Conference 8. Connecticut: Begellhouse, 1986. http://dx.doi.org/10.1615/ihtc8.3660.
Texto completo da fonteGong Wei, Li Ruo, Yan Ningning e Zhao Weibo. "Numerical simulation of bioluminescence tomography". In 2008 Chinese Control Conference (CCC). IEEE, 2008. http://dx.doi.org/10.1109/chicc.2008.4605159.
Texto completo da fonteHashim, Uda, P. N. A. Diyana e Tijjani Adam. "Numerical simulation of Microfluidic devices". In 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE). IEEE, 2012. http://dx.doi.org/10.1109/smelec.2012.6417083.
Texto completo da fonteMahajerin, Enayat, e Gary J. Burgess. "Numerical Simulation of Truck Transportation". In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62358.
Texto completo da fonteTech, Tomás Wayhs, Ignacio Iturrioz e Agenor Dias de Meira Júnior. "Numerical Simulation of Bus Rollover". In SAE Brasil 2007 Congress and Exhibit. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007. http://dx.doi.org/10.4271/2007-01-2718.
Texto completo da fonteBabu, D. K., A. S. Odeh, A. J. Al-Khalifa e R. C. McCann. "Numerical Simulation of Horizontal Wells". In Middle East Oil Show. Society of Petroleum Engineers, 1991. http://dx.doi.org/10.2118/21425-ms.
Texto completo da fonteRelatórios de organizações sobre o assunto "Mmodelling and numerical simulation"
Wu, Yanlin, e R. B. White. Numerical simulation of Bootstrap Current. Office of Scientific and Technical Information (OSTI), maio de 1993. http://dx.doi.org/10.2172/10160602.
Texto completo da fonteWu, Yanlin, e R. B. White. Numerical simulation of Bootstrap Current. Office of Scientific and Technical Information (OSTI), maio de 1993. http://dx.doi.org/10.2172/6484029.
Texto completo da fonteZeda, Jason D. Numerical Simulation of Evaporating Capillary Jets. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1999. http://dx.doi.org/10.21236/ada367314.
Texto completo da fonteAgarwal, Ramesh K., e Ramesh Balakrishnan. Numerical Simulation of BGK-Burnett Equations. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1996. http://dx.doi.org/10.21236/ada326201.
Texto completo da fonteCoffey, K. A., e P. A. Gremaud. Numerical Simulation of Aerated Powder Consolidation. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2001. http://dx.doi.org/10.21236/ada392913.
Texto completo da fonteFeng, Zhigang, Jianjun Miao, Adrian Peralta-Alva e Manuel S. Santos. Numerical Simulation of Nonoptimal Dynamic Equilibrium Models. Federal Reserve Bank of St. Louis, 2009. http://dx.doi.org/10.20955/wp.2009.018.
Texto completo da fonteH. N. Najm. MPP Direct Numerical Simulation of Diesel Autoignition. Office of Scientific and Technical Information (OSTI), novembro de 2000. http://dx.doi.org/10.2172/791301.
Texto completo da fonteUeyoshi, Kyozo, J. O. Roads e J. Alpert. A numerical simulation of the Catalina Eddy. Office of Scientific and Technical Information (OSTI), dezembro de 1991. http://dx.doi.org/10.2172/10194723.
Texto completo da fonteOdstroil, Dusan. Numerical Simulation of Heliospheric Transients Approaching Geospace. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2009. http://dx.doi.org/10.21236/ada530898.
Texto completo da fontePena, Jeremy R. Numerical Simulation Of Cratering Effects In Adobe. Fort Belvoir, VA: Defense Technical Information Center, julho de 2013. http://dx.doi.org/10.21236/ad1003791.
Texto completo da fonte