Literatura científica selecionada sobre o tema "Mixed precision computation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Mixed precision computation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Mixed precision computation"
Van Zee, Field G., Devangi N. Parikh e Robert A. Van De Geijn. "Supporting Mixed-domain Mixed-precision Matrix Multiplication within the BLIS Framework". ACM Transactions on Mathematical Software 47, n.º 2 (abril de 2021): 1–26. http://dx.doi.org/10.1145/3402225.
Texto completo da fonteAl-Marakeby, A. "PRECISION ON DEMAND: A NOVEL LOSSLES MIXED-PRECISION COMPUTATION TECHNIQUE". Journal of Al-Azhar University Engineering Sector 15, n.º 57 (1 de outubro de 2020): 1046–56. http://dx.doi.org/10.21608/auej.2020.120378.
Texto completo da fonteWang, Shengquan, Chao Wang, Yong Cai e Guangyao Li. "A novel parallel finite element procedure for nonlinear dynamic problems using GPU and mixed-precision algorithm". Engineering Computations 37, n.º 6 (22 de fevereiro de 2020): 2193–211. http://dx.doi.org/10.1108/ec-07-2019-0328.
Texto completo da fonteLiu, Xingchao, Mao Ye, Dengyong Zhou e Qiang Liu. "Post-training Quantization with Multiple Points: Mixed Precision without Mixed Precision". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 10 (18 de maio de 2021): 8697–705. http://dx.doi.org/10.1609/aaai.v35i10.17054.
Texto completo da fonteZhang, Jianfei, e Lei Zhang. "Efficient CUDA Polynomial Preconditioned Conjugate Gradient Solver for Finite Element Computation of Elasticity Problems". Mathematical Problems in Engineering 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/398438.
Texto completo da fonteMolina, Roméo, Vincent Lafage, David Chamont e Fabienne Jézéquel. "Investigating mixed-precision for AGATA pulse-shape analysis". EPJ Web of Conferences 295 (2024): 03020. http://dx.doi.org/10.1051/epjconf/202429503020.
Texto completo da fonteYang, Linjie, e Qing Jin. "FracBits: Mixed Precision Quantization via Fractional Bit-Widths". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 12 (18 de maio de 2021): 10612–20. http://dx.doi.org/10.1609/aaai.v35i12.17269.
Texto completo da fonteStupishin, Leonid U., e Konstantin E. Nikitin. "Mixed Finite Element of Geometrically Nonlinear Shallow Shells of Revolution". Applied Mechanics and Materials 501-504 (janeiro de 2014): 514–17. http://dx.doi.org/10.4028/www.scientific.net/amm.501-504.514.
Texto completo da fonteBurkov, Andriy, e Brahim Chaib-draa. "An Approximate Subgame-Perfect Equilibrium Computation Technique for Repeated Games". Proceedings of the AAAI Conference on Artificial Intelligence 24, n.º 1 (4 de julho de 2010): 729–36. http://dx.doi.org/10.1609/aaai.v24i1.7623.
Texto completo da fonteLam, Michael O., e Jeffrey K. Hollingsworth. "Fine-grained floating-point precision analysis". International Journal of High Performance Computing Applications 32, n.º 2 (15 de junho de 2016): 231–45. http://dx.doi.org/10.1177/1094342016652462.
Texto completo da fonteTeses / dissertações sobre o assunto "Mixed precision computation"
Steffy, Daniel E. "Topics in exact precision mathematical programming". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39639.
Texto completo da fonteRobeyns, Matthieu. "Mixed precision algorithms for low-rank matrix and tensor approximations". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG095.
Texto completo da fonteData management is often done by mathematical objects such as matrices and tensors, which are the generalization of matrices to more than two dimensions.Some application domains require too many elements to be stored, creating tensors too large; this problem is known as the emph curse of dimensionality.Mathematical methods such as low-rank approximations have been developed to reduce the dimensionality of these objects despite a very high cost in computation time.Moreover, new computer architectures such as GPUs allow us to perform computations quickly, especially when computing with low precision.Combining these new architectures with low-rank approximation is a solution despite the quality of the results being impaired by low precision.This thesis aims to propose low-rank approximation algorithms that are stable in low precision while maintaining the speedup inherent in low-precision computation, which is feasible thanks to mixed-precision computation.We have developed a general method for mixed-precision tensor approximation by first computing a low-precision approximation and iteratively refining it with higher precision to maintain the quality of the result.Knowing that this speedup comes mainly from GPU architectures, more precisely from specialized computing units called emph ensor cores, we have developed a general matrix approximation method for mixed-precision GPU architectures using these emph tensor cores.Our method maintains the quality of the result but at the expense of a higher-dimensional approximation than standard applications.To compensate for this gap, dimension recompression methods exist for different tensor formats.Our final contribution proposes a recompression method encompassing the different tensor and matrix formats while proving analytically its stability
Livros sobre o assunto "Mixed precision computation"
Li, Wei, Leilei Ji, Ramesh Agarwal, Weidong Shi e Ling Zhou. Mixed-flow Pumps: Modeling, Simulation, and Measurements. ASME-Wiley, 2024. http://dx.doi.org/10.1115/1.862mfp.
Texto completo da fonteCapítulos de livros sobre o assunto "Mixed precision computation"
Giraud, Luc, Azzam Haidar e Layne T. Watson. "Mixed-Precision Preconditioners in Parallel Domain Decomposition Solvers". In Lecture Notes in Computational Science and Engineering, 357–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75199-1_44.
Texto completo da fonteBen Khalifa, Dorra, Matthieu Martel e Assalé Adjé. "POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations". In Communications in Computer and Information Science, 77–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46902-3_5.
Texto completo da fonteCarrillo, Carlos, Tomás Margalef, Antonio Espinosa e Ana Cortés. "Impact of Mixed-Precision: A Way to Accelerate Data-Driven Forest Fire Spread Systems". In Computational Science – ICCS 2023, 62–76. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-36021-3_5.
Texto completo da fonteGlimberg, S. L., A. P. Engsig-Karup e M. G. Madsen. "A Fast GPU-Accelerated Mixed-Precision Strategy for Fully Nonlinear Water Wave Computations". In Numerical Mathematics and Advanced Applications 2011, 645–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33134-3_68.
Texto completo da fonteHalbiniak, Kamil, Krzysztof Rojek, Sergio Iserte e Roman Wyrzykowski. "Unleashing the Potential of Mixed Precision in AI-Accelerated CFD Simulation on Intel CPU/GPU Architectures". In Computational Science – ICCS 2024, 203–17. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63778-0_15.
Texto completo da fonteFreytag, Gabriel, João V. F. Lima, Paolo Rech e Philippe O. A. Navaux. "Impact of Reduced and Mixed-Precision on the Efficiency of a Multi-GPU Platform on CFD Applications". In Computational Science and Its Applications – ICCSA 2022 Workshops, 570–87. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10542-5_39.
Texto completo da fonteBaccar, Sahbi, Timothée Levi, Dominique Dallet e François Barbara. "Optimizing Model Precision in High Temperatures for Efficient Analog and Mixed-Signal Circuit Design Using Modern Behavioral Modeling Technique: An Industrial Case Study". In Computational Intelligence in Analog and Mixed-Signal (AMS) and Radio-Frequency (RF) Circuit Design, 177–215. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19872-9_7.
Texto completo da fonteGoddeke, Dominik, e Robert Strzodka. "Mixed-Precision GPU-Multigrid Solvers with Strong Smoothers". In Chapman & Hall/CRC Computational Science, 131–47. CRC Press, 2010. http://dx.doi.org/10.1201/b10376-11.
Texto completo da fonteBarnett, R. N., P. J. Reynolds e W. A. Lester. "Monte Carlo algorithms for expectation values of coordinate operators". In Quantum Monte Carlo, 77. Oxford University PressNew York, NY, 2007. http://dx.doi.org/10.1093/oso/9780195310108.003.0080.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Mixed precision computation"
Bertaccini, Luca, Siyuan Shen, Torsten Hoefler e Luca Benini. "Extending RISC-V for Efficient Overflow Recovery in Mixed-Precision Computations". In 2024 IEEE 42nd International Conference on Computer Design (ICCD), 268–75. IEEE, 2024. https://doi.org/10.1109/iccd63220.2024.00048.
Texto completo da fonteWang, Junjie, Zhi-Ming Li, Sheng Zuo, Shugang Jiang e Xiaojie Dang. "A Mixed Precision Direct Electromagnetic Finite Element Solver on GPUs". In 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/aces-china62474.2024.10699568.
Texto completo da fonteGao, Bin. "Memristor Based Mixed-Precision Computation-in-Memory System". In 2023 International Conference on IC Design and Technology (ICICDT). IEEE, 2023. http://dx.doi.org/10.1109/icicdt59917.2023.10332328.
Texto completo da fonteLam, Michael O., Jeffrey K. Hollingsworth, Bronis R. de Supinski e Matthew P. Legendre. "Automatically adapting programs for mixed-precision floating-point computation". In the 27th international ACM conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2464996.2465018.
Texto completo da fonteRen, Xuanzhengbo, Masatoshi Kawai, Tetsuya Hoshino, Takahiro Katagiri e Toru Nagai. "Auto-tuning Mixed-precision Computation by Specifying Multiple Regions". In 2023 Eleventh International Symposium on Computing and Networking (CANDAR). IEEE, 2023. http://dx.doi.org/10.1109/candar60563.2023.00031.
Texto completo da fonteLam, Michael O., Bronis R. de Supinksi, Matthew P. LeGendre e Jeffrey K. Hollingsworth. "Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation". In 2012 SC Companion: High Performance Computing, Networking, Storage and Analysis (SCC). IEEE, 2012. http://dx.doi.org/10.1109/sc.companion.2012.231.
Texto completo da fonteLam, Michael O., Bronis R. de Supinksi, Matthew P. LeGendre e Jeffrey K. Hollingsworth. "Poster: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation". In 2012 SC Companion: High Performance Computing, Networking, Storage and Analysis (SCC). IEEE, 2012. http://dx.doi.org/10.1109/sc.companion.2012.232.
Texto completo da fonteMiret, Santiago, Vui Seng Chua, Mattias Marder, Mariano Phiellip, Nilesh Jain e Somdeb Majumdar. "Neuroevolution-enhanced multi-objective optimization for mixed-precision quantization". In GECCO '22: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3512290.3528692.
Texto completo da fonteAbdelfattah, Ahmad, Stanimire Tomov e Jack Dongarra. "Towards Half-Precision Computation for Complex Matrices: A Case Study for Mixed Precision Solvers on GPUs". In 2019 IEEE/ACM 10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA). IEEE, 2019. http://dx.doi.org/10.1109/scala49573.2019.00008.
Texto completo da fonteTang, Ray. "Use Mixed Precision Data Types to Speed up Computation for Ultrasound Imaging Software". In 2022 7th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS). IEEE, 2022. http://dx.doi.org/10.1109/iciibms55689.2022.9971490.
Texto completo da fonte