Literatura científica selecionada sobre o tema "Mirror symmetry"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Mirror symmetry".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Mirror symmetry"
Ma, Zhi Yong. "Research on Concept System of Rotation-Mirror Symmetry in Mechanical Systems". Applied Mechanics and Materials 201-202 (outubro de 2012): 7–10. http://dx.doi.org/10.4028/www.scientific.net/amm.201-202.7.
Texto completo da fonteTakahashi, Nobuyoshi. "Log Mirror Symmetry and Local Mirror Symmetry". Communications in Mathematical Physics 220, n.º 2 (julho de 2001): 293–99. http://dx.doi.org/10.1007/pl00005567.
Texto completo da fonteBlumenhagen, Ralph, Rolf Schimmrigk e Andreas Wiβkirchen. "(0,2) Mirror symmetry". Nuclear Physics B 486, n.º 3 (fevereiro de 1997): 598–628. http://dx.doi.org/10.1016/s0550-3213(96)00698-0.
Texto completo da fonteGross, Mark. "Topological mirror symmetry". Inventiones mathematicae 144, n.º 1 (abril de 2001): 75–137. http://dx.doi.org/10.1007/s002220000119.
Texto completo da fonteWan, Daqing. "Arithmetic Mirror Symmetry". Pure and Applied Mathematics Quarterly 1, n.º 2 (2005): 369–78. http://dx.doi.org/10.4310/pamq.2005.v1.n2.a7.
Texto completo da fonteZhang, Jun, e Gabriel Khan. "Statistical mirror symmetry". Differential Geometry and its Applications 73 (dezembro de 2020): 101678. http://dx.doi.org/10.1016/j.difgeo.2020.101678.
Texto completo da fonteMa, Zhi Yong. "Research on Concept System of Mechanical Glide Symmetry". Applied Mechanics and Materials 151 (janeiro de 2012): 433–37. http://dx.doi.org/10.4028/www.scientific.net/amm.151.433.
Texto completo da fonteMELKEMI, MAHMOUD, FREDERIC CORDIER e NICKOLAS S. SAPIDIS. "A PROVABLE ALGORITHM TO DETECT WEAK SYMMETRY IN A POLYGON". International Journal of Image and Graphics 13, n.º 01 (janeiro de 2013): 1350002. http://dx.doi.org/10.1142/s0219467813500022.
Texto completo da fonteGiveon, Amit, e Edward Witten. "Mirror symmetry as a gauge symmetry". Physics Letters B 332, n.º 1-2 (julho de 1994): 44–50. http://dx.doi.org/10.1016/0370-2693(94)90856-7.
Texto completo da fonteDUNDEE, B., J. PERKINS e G. CLEAVER. "OBSERVABLE/HIDDEN SECTOR BROKEN SYMMETRY FOR SYMMETRIC BOUNDARY CONDITIONS". International Journal of Modern Physics A 21, n.º 16 (30 de junho de 2006): 3367–85. http://dx.doi.org/10.1142/s0217751x06031090.
Texto completo da fonteTeses / dissertações sobre o assunto "Mirror symmetry"
Branco, Lucas Castello. "Higgs bundles, Lagrangians and mirror symmetry". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:612325bd-6a7f-4d74-a85c-426b73ff7a14.
Texto completo da fonteMertens, Adrian. "Mirror Symmetry in the presence of Branes". Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-135464.
Texto completo da fonteGu, Wei. "Gauged Linear Sigma Model and Mirror Symmetry". Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90892.
Texto completo da fonteDoctor of Philosophy
In this thesis, I summarize my work on gauged linear sigma models (GLSMs) and mirror symmetry. We begin by using supersymmetric localization to show that A-twisted GLSM correlation functions for certain supermanifolds are equivalent to corresponding A-twisted GLSM correlation functions for hypersurfaces. We also define associated Cartan theories for non-abelian GLSMs. We then consider N =(0,2) GLSMs. For those deformed from N =(2,2) GLSMs, we consider A/2-twisted theories and formulate the genus-zero correlation functions on Coulomb branches. We reproduce known results for abelian GLSMs, and can systematically compute more examples with new formulas that render the quantum sheaf cohomology relations and other properties are manifest. We also include unpublished results for counting deformation parameters. We then turn to mirror symmetry, a duality between seemingly-different two-dimensional quantum field theories. We propose an extension of the Hori-Vafa mirror construction [25] from abelian (2,2) GLSMs to non-abelian (2,2) GLSMs with connected gauge groups, a potential solution to an old problem. In this thesis, we study two examples, Grassmannians and two-step flag manifolds, verifying in each case that the mirror correctly reproduces details ranging from the number of vacua and correlations functions to quantum cohomology relations. We then propose an extension of the HoriVafa construction [25] of (2,2) GLSM mirrors to (0,2) theories obtained from (2,2) theories by special tangent bundle deformations. Our ansatz can systematically produce the (0,2) mirrors of toric varieties and the results are consistent with existing examples. We conclude with a discussion of directions that we would like to pursue in the future.
Perevalov, Eugene V. "Type II/heterotic duality and mirror symmetry /". Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Texto completo da fonteRossi, Paolo. "Symplectic Topology, Mirror Symmetry and Integrable Systems". Doctoral thesis, SISSA, 2008. http://hdl.handle.net/11577/3288900.
Texto completo da fonteKrefl, Daniel. "Real Mirror Symmetry and The Real Topological String". Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-102832.
Texto completo da fonteWilliams, Matthew Michael. "Mirror Symmetry for Non-Abelian Landau-Ginzburg Models". BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8560.
Texto completo da fonteUeda, Kazushi. "Homological mirror symmetry for toric del Pezzo surfaces". 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144153.
Texto completo da fonte0048
新制・課程博士
博士(理学)
甲第12069号
理博第2963号
新制||理||1443(附属図書館)
23905
UT51-2006-J64
京都大学大学院理学研究科数学・数理解析専攻
(主査)助教授 河合 俊哉, 教授 齋藤 恭司, 教授 柏原 正樹
学位規則第4条第1項該当
Kadir, Shabnam Nargis. "The arithmetic of Calabi-Yau manifolds and mirror symmetry". Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403756.
Texto completo da fontePetracci, Andrea. "On Mirror Symmetry for Fano varieties and for singularities". Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/55877.
Texto completo da fonteLivros sobre o assunto "Mirror symmetry"
Mirror symmetry. Providence, RI: American Mathematical Society, 1999.
Encontre o texto completo da fonteKentaro, Hori, ed. Mirror symmetry. Providence, RI: American Mathematical Society, 2003.
Encontre o texto completo da fonteJinzenji, Masao. Classical Mirror Symmetry. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1.
Texto completo da fonte1963-, Greene B., e Yau Shing-Tung 1949-, eds. Mirror symmetry II. Providence, RI: American Mathematical Society, 1997.
Encontre o texto completo da fonte1949-, Yau Shing-Tung, ed. Mirror symmetry I. Providence, RI: American Mathematical Society, 1998.
Encontre o texto completo da fonteCastaño-Bernard, Ricardo, Yan Soibelman e Ilia Zharkov, eds. Mirror Symmetry and Tropical Geometry. Providence, Rhode Island: American Mathematical Society, 2010. http://dx.doi.org/10.1090/conm/527.
Texto completo da fonteCox, David A. Mirror symmetry and algebraic geometry. Providence, R.I: American Mathematical Society, 1999.
Encontre o texto completo da fonte1964-, Aspinwall Paul, ed. Dirichlet branes and mirror symmetry. Providence, R.I: American Mathematical Society, 2009.
Encontre o texto completo da fonteReality's mirror: Exploring the mathematics of symmetry. New York: Wiley, 1989.
Encontre o texto completo da fonteConference on Complex Geometry and Mirror Symmetry (1995 Montréal, Québec). Mirror symmetry III: Proceedings of the Conference on Complex Geometry and Mirror Symmetry, Montréal, 1995. Editado por Phong Duong H. 1953-, Vinet Luc e Yau Shing-Tung 1949-. Providence, R.I: American Mathematical Society, 1998.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Mirror symmetry"
Berman, David, Hugo Garcia-Compean, Paulius Miškinis, Miao Li, Daniele Oriti, Steven Duplij, Steven Duplij et al. "Mirror Symmetry". In Concise Encyclopedia of Supersymmetry, 241. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_320.
Texto completo da fonteTalpo, Mattia. "Batyrev Mirror Symmetry". In Springer Proceedings in Mathematics & Statistics, 103–13. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91626-2_9.
Texto completo da fonteCox, David, e Sheldon Katz. "Mirror symmetry constructions". In Mathematical Surveys and Monographs, 53–72. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/surv/068/04.
Texto completo da fonteClader, Emily, e Yongbin Ruan. "Mirror Symmetry Constructions". In B-Model Gromov-Witten Theory, 1–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94220-9_1.
Texto completo da fonteJinzenji, Masao. "Brief History of Classical Mirror Symmetry". In Classical Mirror Symmetry, 1–26. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_1.
Texto completo da fonteJinzenji, Masao. "Basics of Geometry of Complex Manifolds". In Classical Mirror Symmetry, 27–53. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_2.
Texto completo da fonteJinzenji, Masao. "Topological Sigma Models". In Classical Mirror Symmetry, 55–81. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_3.
Texto completo da fonteJinzenji, Masao. "Details of B-Model Computation". In Classical Mirror Symmetry, 83–108. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_4.
Texto completo da fonteJinzenji, Masao. "Reconstruction of Mirror Symmetry Hypothesis from a Geometrical Point of View". In Classical Mirror Symmetry, 109–40. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0056-1_5.
Texto completo da fonte"Mirror Symmetry". In Visual Symmetry, 5–30. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835321_0001.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Mirror symmetry"
Ge, Li. "Complex Mirror Symmetry in Optics". In Frontiers in Optics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/fio.2018.jw3a.51.
Texto completo da fonteHACKING, PAUL, e SEAN KEEL. "MIRROR SYMMETRY AND CLUSTER ALGEBRAS". In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0073.
Texto completo da fonteThomas, Richard P. "An Exercise in Mirror Symmetry". In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0067.
Texto completo da fonteDE LA OSSA, XENIA. "CALABI-YAU MANIFOLDS AND MIRROR SYMMETRY". In Proceedings of the Tenth General Meeting. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704276_0009.
Texto completo da fonteLenzi, Silvia, e Rita Lau. "Mirror (a)symmetry far from stability". In 10th Latin American Symposium on Nuclear Physics and Applications. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.194.0035.
Texto completo da fonteKONTSEVICH, MAXIM, e YAN SOIBELMAN. "HOMOLOGICAL MIRROR SYMMETRY AND TORUS FIBRATIONS". In Proceedings of the 4th KIAS Annual International Conference. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799821_0007.
Texto completo da fonteKatzarkov, Ludmil. "Birational geometry and homological mirror symmetry". In Proceedings of the Australian-Japanese Workshop. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812706898_0008.
Texto completo da fonteNahm, Werner. "Mirror symmetry and self-duality equations". In Non-perturbative Quantum Effects 2000. Trieste, Italy: Sissa Medialab, 2000. http://dx.doi.org/10.22323/1.006.0023.
Texto completo da fonteMestetskiy, L., e A. Zhuravskaya. "Mirror Symmetry Detection in Digital Images". In 15th International Conference on Computer Vision Theory and Applications. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0008976003310337.
Texto completo da fonteBeradze, Revaz, e Merab Gogberashvili. "LIGO signals from mirror world". In RDP online PhD school and workshop "Aspects of Symmetry". Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.412.0029.
Texto completo da fonteRelatórios de organizações sobre o assunto "Mirror symmetry"
Kachru, Shamit. Mirror Symmetry for Open Strings. Office of Scientific and Technical Information (OSTI), junho de 2000. http://dx.doi.org/10.2172/763790.
Texto completo da fonteSin, Sang-Jin. Chiral Rings, Mirror Symmetry and the Fate of Localized Tachyons. Office of Scientific and Technical Information (OSTI), março de 2003. http://dx.doi.org/10.2172/812956.
Texto completo da fonteChuang, W. A Note on Mirror Symmetry for Manifolds with Spin(7) Holonomy. Office of Scientific and Technical Information (OSTI), junho de 2004. http://dx.doi.org/10.2172/827006.
Texto completo da fonteHua, D., e T. Fowler. SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code. Office of Scientific and Technical Information (OSTI), junho de 2004. http://dx.doi.org/10.2172/15014290.
Texto completo da fonte