Literatura científica selecionada sobre o tema "Microwave networks"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Microwave networks".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Microwave networks"
Son, Wonhyung, Won-Kwang Park e Seong-Ho Son. "A Neural Network-Based Microwave Imaging Method for Object Localization". Journal of Electromagnetic Engineering and Science 22, n.º 5 (30 de setembro de 2022): 576–79. http://dx.doi.org/10.26866/jees.2022.5.r.125.
Texto completo da fonteStepanets, I. V., V. A. Stepanets, E. M. Zaychik e S. M. Odoevsky. "FEATURES OF THE APPLICATION AND PLANNING OF THE MICROWAVE TRANSMISSION IN THE 5th GENERATION NETWORKS". Informatization and communication, n.º 3 (24 de maio de 2019): 77–83. http://dx.doi.org/10.34219/2078-8320-2019-10-3-77-83.
Texto completo da fonteSemennikov, Anton V. "MICROWAVE ELECTRONICS TECHNOLOGIES FOR 5G AND 6G WIRELESS NETWORKS". EKONOMIKA I UPRAVLENIE: PROBLEMY, RESHENIYA 9/6, n.º 150 (2024): 176–84. http://dx.doi.org/10.36871/ek.up.p.r.2024.09.06.020.
Texto completo da fonteOvereem, A., H. Leijnse e R. Uijlenhoet. "Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network". Atmospheric Measurement Techniques Discussions 8, n.º 8 (7 de agosto de 2015): 8191–230. http://dx.doi.org/10.5194/amtd-8-8191-2015.
Texto completo da fonteKatkevičius, Andrius, Darius Plonis, Robertas Damaševičius e Rytis Maskeliūnas. "Trends of Microwave Devices Design Based on Artificial Neural Networks: A Review". Electronics 11, n.º 15 (28 de julho de 2022): 2360. http://dx.doi.org/10.3390/electronics11152360.
Texto completo da fonteWang, Lin, Guangying Wang e Jingxu Chen. "IOT-Based Injection-Locked Microwave Photonic Frequency Division Signal Processing". Mobile Information Systems 2022 (27 de setembro de 2022): 1–10. http://dx.doi.org/10.1155/2022/1351399.
Texto completo da fonteMilovanovic, Bratislav, Vera Markovic, Zlatica Marinkovic e Zoran Stankovic. "Some applications of neural networks in microwave modeling". Journal of Automatic Control 13, n.º 1 (2003): 39–46. http://dx.doi.org/10.2298/jac0301039m.
Texto completo da fonteOvereem, Aart, Hidde Leijnse e Remko Uijlenhoet. "Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network". Atmospheric Measurement Techniques 9, n.º 5 (1 de junho de 2016): 2425–44. http://dx.doi.org/10.5194/amt-9-2425-2016.
Texto completo da fonteMu, Zhong Guo, Xue Lian Bai, Yi Ding Luo, Jian Ting Mei e Ming Hu Zhang. "Study on Microwave Curing of Polyurethane (PU)/Epoxy (EP) Interpenetrating Networks (IPN)". Applied Mechanics and Materials 556-562 (maio de 2014): 649–52. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.649.
Texto completo da fonteWang, Lulu. "Holographic Microwave Image Classification Using a Convolutional Neural Network". Micromachines 13, n.º 12 (23 de novembro de 2022): 2049. http://dx.doi.org/10.3390/mi13122049.
Texto completo da fonteTeses / dissertações sobre o assunto "Microwave networks"
Mohammad, Malik Adeel, e Saeed Muhammad Sheharyar. "Load Balancing in Microwave Networks". Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121698.
Texto completo da fonteMcKenzie, Wilfred. "Characterisation of microwave passive networks based on electromagnetic analysis". Thesis, University of Leeds, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278080.
Texto completo da fonteWang, Fang. "Knowledge based neural networks for microwave modeling and design". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ37081.pdf.
Texto completo da fonteDias, De Macedo Filho Antonio. "Microwave neural networks and fuzzy classifiers for ES systems". Thesis, University College London (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244066.
Texto completo da fonteWang, Fang Carleton University Dissertation Engineering Electronics. "Knowledge based neural networks for microwave modeling and design". Ottawa, 1998.
Encontre o texto completo da fonteBasarudin, Hafiz. "Development of a heterogeneous microwave network, fade simulation tool applicable to networks that span Europe". Thesis, University of Hull, 2012. http://hydra.hull.ac.uk/resources/hull:5774.
Texto completo da fonteMuñoz-Arcos, Christian Daniel. "Optical Microwave Signal Generation for Data Transmission in Optical Networks". Thesis, Toulouse, ISAE, 2020. http://www.theses.fr/2020ESAE0013.
Texto completo da fonteThe massive growth of telecommunication services and the increasing global data traffic boostthe development, implementation, and integration of different networks for data transmission.An example of this development is the optical fiber networks, responsible today for theinter-continental connection through long-distance links and high transfer rates. The opticalnetworks, as well as the networks supported by other transmission media, use electricalsignals at specific frequencies for the synchronization of the network elements. The qualityof these signals is usually determined in terms of phase noise. Due to the major impact ofthe phase noise over the system performance, its value should be minimized.The research work presented in this document describes the design and implementation ofan optoelectronic system for the microwave signal generation using a vertical-cavity surfaceemittinglaser (VCSEL) and its integration into an optical data transmission system. Consideringthat the proposed system incorporates a directly modulated VCSEL, a theoreticaland experimental characterization was developed based on the laser rate equations, dynamicand static measurements, and an equivalent electrical model of the active region. This proceduremade possible the extraction of some VCSEL intrinsic parameters, as well as thevalidation and simulation of the VCSEL performance under specific modulation conditions.The VCSEL emits in C-band, this wavelength was selected because it is used in long-haullinks. The proposed system is a self-initiated oscillation system caused by internal noise sources,which includes a VCSEL modulated in large signal to generate optical pulses (gain switching).The optical pulses, and the optical frequency comb associated, generate in electricaldomain simultaneously a fundamental frequency (determined by a band-pass filter) and severalharmonics. The phase noise measured at 10 kHz from the carrier at 1.25 GHz was -127.8dBc/Hz, and it is the lowest value reported in the literature for this frequency and architecture.Both the jitter and optical pulse width were determined when different resonantcavities and polarization currents were employed. The lowest pulse duration was 85 ps andwas achieved when the fundamental frequency was 2.5 GHz. As for the optical frequencycomb, it was demonstrated that its flatness depends on the electrical modulation conditions.The flattest profiles are obtained when the fundamental frequency is higher than the VCSELrelaxation frequency. Both the electrical and the optical output of the system were integrated into an optical transmitter.The electrical signal provides the synchronization of the data generating equipment,whereas the optical pulses are employed as an optical carrier. Data transmissions at 155.52Mb/s, 622.08 Mb/s and 1.25 Gb/s were experimentally validated. It was demonstrated thatthe fundamental frequency and harmonics could be extracted from the optical data signaltransmitted by a band-pass filter. It was also experimentally proved that the pulsed returnto-zero (RZ) transmitter at 1.25 Gb/s, achieves bit error rates (BER) lower than 10−9 whenthe optical power at the receiver is higher than -33 dBm. la plus faible, 85 ps, a été obtenue lorsque la fréquence fondamentale du système était de 2,5 GHz. En ce qui concerne le peigne de fréquences optiques, il a été démontré que la formedu peigne dépend des conditions de modulation électrique et que les profils les plus platssont obtenus lorsque la fréquence fondamentale est supérieure à la fréquence de relaxationdu VCSEL. Les sorties électrique et optique du système ont été intégrées dans un émetteur optique. Lesignal électrique permet la synchronisation de l’équipement responsable de la génération desdonnées, tandis que les impulsions optiques sont utilisées comme porteuse optique. La transmissionde données à 155,52 Mb/s, 622,08 Mb/s et 1,25 Gb/s a été validée expérimentalement
Hedrick, Jeffrey C. "High performance polymeric networks and thermoplastic blends : microwave versus thermal processing /". Diss., This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-07122007-103925/.
Texto completo da fonteVita. Abstract. No film copy made for this title. Includes bibliographical references (leaves 243-254). Also available via the Internet.
Lochtie, Gail D. "Propagation at microwave frequencies in the presence of tropospheric stratified layers". Thesis, University of Essex, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303451.
Texto completo da fontePratap, Rana Jitendra. "Design and Optimization of Microwave Circuits and Systems Using Artificial Intelligence Techniques". Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7225.
Texto completo da fonteLivros sobre o assunto "Microwave networks"
Strobel, Otto, ed. Optical and Microwave Technologies for Telecommunication Networks. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119114857.
Texto completo da fonteLehpamer, Harvey. Microwave transmission networks: Planning, design, and deployment. 2a ed. New York: McGraw-Hill, 2010.
Encontre o texto completo da fonteLehpamer, Harvey. Microwave transmission networks: Planning, design, and deployment. 2a ed. New York: McGraw-Hill, 2010.
Encontre o texto completo da fonteLehpamer, Harvey. Microwave transmission networks: Planning, design, and deployment. 2a ed. New York: McGraw-Hill, 2010.
Encontre o texto completo da fonteLo, Jonathan O. Y. Time domain finite element analysis of microwave planar networks. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.
Encontre o texto completo da fonteFeher, Kamilo. Digital communications: Microwave applications. New Delhi: Prentice-Hall, 1987.
Encontre o texto completo da fonteWincza, Krzysztof. Design of microwave networks with broadband directional couplers: Projektowanie układów mikrofalowych wykorzystujących szerokopasmowe sprzęgacze kierunkowe. Krakow: AGH University of Science and Technology Press, 2011.
Encontre o texto completo da fonteDobrowolski, Janusz. Computer-aided analysis, modeling, and design of microwave networks: The wave approach. Boston: Artech House, 1996.
Encontre o texto completo da fonteJ, Reddy C., e Langley Research Center, eds. Application of FEM to estimate complex permittivity of dielectric material at microwave frequency using waveguide measurements. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Encontre o texto completo da fonteCataldo, Andrea. Broadband Reflectometry for Enhanced Diagnostics and Monitoring Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Microwave networks"
Benson, F. A., e T. M. Benson. "Microwave networks". In Fields, Waves and Transmission Lines, 150–83. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-2382-2_6.
Texto completo da fonteNadiv, Ron. "Microwave Backhaul Networks". In Convergence of Mobile and Stationary Next-Generation Networks, 163–202. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470630976.ch6.
Texto completo da fonteQin, Juehang, e A. Hubler. "Reducing Microwave Absorption with Chaotic Microwaves". In Lecture Notes in Networks and Systems, 119–26. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52621-8_11.
Texto completo da fonteNoghanian, Sima, Abas Sabouni, Travis Desell e Ali Ashtari. "Inclusion of A Priori Information Using Neural Networks". In Microwave Tomography, 87–141. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0752-6_5.
Texto completo da fonteMartín, Ferran, Jordi Naqui, Francisco Medina, Lei Zhu e Jiasheng Hong. "INTRODUCTION TO BALANCED TRANSMISSION LINES, CIRCUITS, AND NETWORKS". In Balanced Microwave Filters, 1–20. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119238386.ch1.
Texto completo da fonteRaghunandan, Krishnamurthy. "Microwave and Millimeter-Wave Links". In Introduction to Wireless Communications and Networks, 277–96. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92188-0_14.
Texto completo da fonteAl-Zoubi, Abdallah. "Flipping the Microwave Engineering Class". In Lecture Notes in Networks and Systems, 809–19. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26876-2_77.
Texto completo da fonteKoul, Shiban Kishen, e Sukomal Dey. "Micromachined Microwave Phase Shifters". In Radio Frequency Micromachined Switches, Switching Networks, and Phase Shifters, 77–100. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9781351021340-5.
Texto completo da fonteSisodiya, Divya, Yash Bahuguna, Akanksha Srivastava e Gurjit Kaur. "Green Microwave and Satellite Communication Systems". In Green Communication Technologies for Future Networks, 231–52. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003264477-13.
Texto completo da fonteGuglielmi, M. "Microwave Networks and the Method of Moments". In Applied Computational Electromagnetics, 131–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59629-2_8.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Microwave networks"
Masud, Md Abdullah Al, Alazar Araia, Yuxin Wang, Jianli Hu e Yuhe Tian. "Machine Learning-Aided Process Design for Microwave-Assisted Ammonia Production". In Foundations of Computer-Aided Process Design, 316–21. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.121422.
Texto completo da fonteGemmato, Valentina, Filippo Scotti, Federico Camponeschi, Luca Rinaldi, Marco Bartocci, Claudio Porzi e Paolo Ghelfi. "Microwave Photonics Optical Filter for ESM Systems". In 2024 24th International Conference on Transparent Optical Networks (ICTON), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icton62926.2024.10647818.
Texto completo da fontePIRKL, W. "MICROWAVE ELECTRONICS – MICROWAVE NETWORKS". In Proceedings of the Joint US-CERN-Japan International School. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814447324_0004.
Texto completo da fonteLembo, Leonardo, Salvatore Maresca, Giovanni Serafino, Filippo Scotti, Antonio Malacarne, Paolo Ghelfi e Antonella Bogoni. "Microwave Photonics for a Radar Network". In Photonic Networks and Devices. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/networks.2019.neth2d.2.
Texto completo da fonteKodjo, Alvinice, Brigitte Jaumard, Napoleao Nepomuceno, Mejdi Kaddour e David Coudert. "Dimensioning microwave wireless networks". In 2015 IEEE International Conference on Signal Processing for Communications (ICC). IEEE, 2015. http://dx.doi.org/10.1109/icc.2015.7248751.
Texto completo da fonteMinasian, R. A., X. Yi e L. Li. "Microwave photonic processing of high-speed microwave signals". In 2016 18th International Conference on Transparent Optical Networks (ICTON). IEEE, 2016. http://dx.doi.org/10.1109/icton.2016.7550273.
Texto completo da fonteZvonimir Vrazic, Dubravko Zagar e Sonja Grgic. "Adaptive modulation in microwave networks". In ELMAR 2007. IEEE, 2007. http://dx.doi.org/10.1109/elmar.2007.4418841.
Texto completo da fonteCharalambous, Georgios, e Stavros Iezekiel. "Microwave Photonic Linear Frequency Networks". In 2019 21st International Conference on Transparent Optical Networks (ICTON). IEEE, 2019. http://dx.doi.org/10.1109/icton.2019.8840536.
Texto completo da fonteGloba, L., Y. Demidova e M. Ternovoy. "Network Anomaly Detection using Neural Networks". In 2006 16th International Crimean Microwave and Telecommunication Technology. IEEE, 2006. http://dx.doi.org/10.1109/crmico.2006.256445.
Texto completo da fonteCarpintero, Guillermo, Muhsin Ali, Luis Enrique García-Muñoz, Frédéric van Dijk, Robinson Cruzoe Guzman, Douwe H. Geuzebroek, Chris G. H. Roeloffzen, David de Felipe e Norbert Keil. "Advances in hybrid integrated microwave photonic systems for millimeter- and Terahertz wave generation". In Photonic Networks and Devices. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/networks.2020.netu3b.4.
Texto completo da fonteRelatórios de organizações sobre o assunto "Microwave networks"
Singh, D., M. J. Salter e N. M. Ridler. Comparison of Vector Network Analyser (VNA) calibration techniques at microwave frequencies. National Physical Laboratory, setembro de 2020. http://dx.doi.org/10.47120/npl.tqe14.
Texto completo da fonteWong, N. C. Optical-to-Microwave Frequency Chain Utilizing a Two-Laser-Based Optical Parametric Oscillator Network,. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1995. http://dx.doi.org/10.21236/ada300860.
Texto completo da fonteDuda, L. E. User manual for CSP{_}VANA: A check standards measurement and database program for microwave network analyzers. Office of Scientific and Technical Information (OSTI), outubro de 1997. http://dx.doi.org/10.2172/541945.
Texto completo da fonte