Literatura científica selecionada sobre o tema "Microwave holography"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Microwave holography".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Microwave holography"
Shang, Guanyu, Zhuochao Wang, Haoyu Li, Kuang Zhang, Qun Wu, Shah Burokur e Xumin Ding. "Metasurface Holography in the Microwave Regime". Photonics 8, n.º 5 (22 de abril de 2021): 135. http://dx.doi.org/10.3390/photonics8050135.
Texto completo da fonteRochblatt, D. J., e B. L. Seidel. "Microwave antenna holography". IEEE Transactions on Microwave Theory and Techniques 40, n.º 6 (junho de 1992): 1294–300. http://dx.doi.org/10.1109/22.141363.
Texto completo da fonteGaikovich, Konstantin P., Petr K. Gaikovich, Yelena S. Maksimovitch e Vitaly A. Badeev. "Subsurface Near-Field Microwave Holography". IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9, n.º 1 (janeiro de 2016): 74–82. http://dx.doi.org/10.1109/jstars.2015.2443035.
Texto completo da fonteGuler, M. G., e E. B. Joy. "High resolution spherical microwave holography". IEEE Transactions on Antennas and Propagation 43, n.º 5 (maio de 1995): 464–72. http://dx.doi.org/10.1109/8.384190.
Texto completo da fonteRazevig V. V., Bugaev A. S. e Ivashov S. I. "Comparison of Back-Scattering and Forward-Scattering Methods in Short Range Microwave Imaging Systems". Technical Physics 67, n.º 11 (2022): 1512. http://dx.doi.org/10.21883/tp.2022.11.55184.173-22.
Texto completo da fonteRavan, Maryam, Reza K. Amineh e Natalia K. Nikolova. "Two-dimensional near-field microwave holography". Inverse Problems 26, n.º 5 (27 de abril de 2010): 055011. http://dx.doi.org/10.1088/0266-5611/26/5/055011.
Texto completo da fonteWANG, JinQing, XiuTing ZUO, Kesteven MICHAEL, RongBing ZHAO, LinFeng YU, YongBin JIANG, Wei GOU, YongChen JIANG e Wen GUO. "TM65 m radio telescope microwave holography". SCIENTIA SINICA Physica, Mechanica & Astronomica 47, n.º 9 (14 de junho de 2017): 099502. http://dx.doi.org/10.1360/sspma2016-00415.
Texto completo da fonteSu, Deer, Xinwei Wang, Guanyu Shang, Xumin Ding, Shah Nawaz Burokur, Jian Liu e Haoyu Li. "Amplitude-phase modulation metasurface hologram with inverse angular spectrum diffraction theory". Journal of Physics D: Applied Physics 55, n.º 23 (9 de março de 2022): 235102. http://dx.doi.org/10.1088/1361-6463/ac5699.
Texto completo da fonteTSUCHIYA, Hayato, Naofumi IWAMA, Soichiro YAMAGUCHI, Ryota TAKENAKA e Mayuko KOGA. "Feasibility Study of Holography Using Microwave Scattering". Plasma and Fusion Research 14 (25 de setembro de 2019): 3402146. http://dx.doi.org/10.1585/pfr.14.3402146.
Texto completo da fonteLi, Shaozhong, e J. B. Khurgin. "Microwave-developed three-dimensional real-time holography". Optics Letters 18, n.º 21 (1 de novembro de 1993): 1855. http://dx.doi.org/10.1364/ol.18.001855.
Texto completo da fonteTeses / dissertações sobre o assunto "Microwave holography"
Guler, Michael George. "Spherical microwave holography". Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/15055.
Texto completo da fonteChalodhorn, Wonchalerm. "Use of microwave lenses in phase retrieval microwave holography of reflector antennas". Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/14909.
Texto completo da fonteMarín, Garcia Jordi. "Off-axis holography in microwave imaging systems". Doctoral thesis, Universitat Autònoma de Barcelona, 2015. http://hdl.handle.net/10803/285129.
Texto completo da fonteIn past decades research in terahertz technology was solely motivated by instruments for topics such as astrophysics, planetary and earth sciences. Molecular line spectroscopy detection, identification and mapping of thermal emission and absorption signatures from low pressure gases comprised the main focus for most scientific requirements and motivated the development of terahertz instrumentation and technology. In spite of the scientific contributions of terahertz radiation, its spectrum is still one of the least used electromagnetics bands in commercial use. The unavailability of sources, sensors, sub-systems and instruments has been a cumbersome issue over the past years for its wide-spread use in commercial instrumentation. The combination of technological advances coming from the space-based community, along with the emergence of new applications, have managed to drive again the interest from both public and private sectors which has renown and skyrocketed the funding and research in terahertz applications. Aside from the aforementioned scientific interest, terahertz radiation has appealing characteristics such as good imaging resolution (as compared to lower frequencies), material penetration, spectroscopic capabilities, water absorption and low energy levels. The work of this thesis is part of a Spanish national research project called Terasense. The main focus of the project is to equip national academic research institutions with a completely new set of instrumentations and capabilities in order to advance towards the current state of the art in millimeter and sub-millimeter wave technologies. The main objective of this thesis is to explore the viability of microwave and millimeter-wave imaging systems based on intensity-only holographic techniques. This dissertation is mostly focused on the Off-Axis Holography technique. Not only from a theoretical perspective but specially from an actual implementation standpoint. In order to do so, different experimental setups and devices have been designed and manufactured. Iteration between hardware and software has created a framework for devising and testing different imaging techniques under consideration. The frequency range W-Band (75-110 GHz) has been chosen as the main goal for all systems under study, however different setups will first be constructed, characterized and tested at X-Band (8-12 GHz) in order to build up the expertise required to work at millimeter-wave frequencies.
Dahhan, A. K. "Real-time microwave holography using glow discharge detectors". Thesis, Cardiff University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356739.
Texto completo da fonteZhang, Tieren, University of Western Sydney, of Science Technology and Environment College e School of Engineering and Industrial Design. "Applications of microwave holography to the assessment of antennas and antenna arrays". THESIS_CSTE_EID_Zhang_T.xml, 2001. http://handle.uws.edu.au:8081/1959.7/770.
Texto completo da fonteDoctor of Philosophy (PhD)
Zhang, Tieren. "Applications of microwave holography to the assessment of antennas and antenna arrays". Thesis, View thesis, 2001. http://handle.uws.edu.au:8081/1959.7/770.
Texto completo da fonteZhang, Tieren. "Applications of microwave holography to the assessment of antennas and antenna arrays". View thesis, 2001. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20040330.103805/index.html.
Texto completo da fonte"Submitted in fulfilment of requirements for the degree of Doctor of Philosophy, School of Engineering and Industrial Design, University of Western Sydney" Includes bibliography.
Janice, Brian A. "Differential Near Field Holography for Small Antenna Arrays". Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-theses/999.
Texto completo da fonteRodriguez, Herrera Diego. "Antenna characterisation and optimal sampling constraints for breast microwave imaging systems with a novel wave speed propagation algorithm". IEEE, 2014. http://hdl.handle.net/1993/31907.
Texto completo da fonteFebruary 2017
Vachiramon, Pithawat. "Free-space optical communications with retro-reflecting acquisition and turbulence compensation". Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:9e19fc21-8767-4d6f-9e75-be4527f5e650.
Texto completo da fonteLivros sobre o assunto "Microwave holography"
P, Anderson A., e University of Sheffield. Department of Electronic and Electrical Engineering., eds. Microwave holographic antenna: Metrology 1969-1985 : an historical compilation chronicling the development of microwave holographic antenna metrology. Sheffield: University of Sheffield Department of Electronic and Electrical Engineering, 1985.
Encontre o texto completo da fonteNikolova, Natalia K., Reza K. Amineh e Maryam Ravan. Real-Time Three-Dimensional Imaging of Dielectric Bodies Using Microwave/Millimeter Wave Holography. Wiley & Sons, Incorporated, John, 2019.
Encontre o texto completo da fonteNikolova, Natalia K., Reza K. Amineh e Maryam Ravan. Real-Time Three-Dimensional Imaging of Dielectric Bodies Using Microwave/Millimeter Wave Holography. Wiley & Sons, Incorporated, John, 2019.
Encontre o texto completo da fonteNikolova, Natalia K., Reza K. Amineh e Maryam Ravan. Real-Time Three-Dimensional Imaging of Dielectric Bodies Using Microwave/Millimeter Wave Holography. Wiley & Sons, Incorporated, John, 2019.
Encontre o texto completo da fonteNikolova, Natalia K., Reza K. Amineh e Maryam Ravan. Real-Time Three-Dimensional Imaging of Dielectric Bodies Using Microwave/Millimeter Wave Holography. Wiley & Sons, Limited, John, 2019.
Encontre o texto completo da fonteSchnars, Ulf, e Werner Jüptner. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Springer Berlin / Heidelberg, 2010.
Encontre o texto completo da fonteSchnars, Ulf, e Werner Jueptner. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Springer, 2004.
Encontre o texto completo da fonteSchnars, Ulf, e Werner Jüptner. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Springer London, Limited, 2005.
Encontre o texto completo da fonteWang, L. Basic Principles and Potential Applications of Holographic Microwave Imaging. ASME Press, 2016. http://dx.doi.org/10.1115/1.860434.
Texto completo da fonteWang, Lulu. Basic Principles and Potential Applications of Holographic Microwave Imaging. American Society of Mechanical Engineers, The, 2016.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Microwave holography"
Iizuka, Keigo. "Applications of Microwave Holography". In Engineering Optics, 335–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-69251-7_12.
Texto completo da fonteIizuka, Keigo. "Applications of Microwave Holography". In Springer Series in Optical Sciences, 313–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-540-36808-3_12.
Texto completo da fonteIizuka, Keigo. "Applications of Microwave Holography". In Engineering Optics, 313–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-07032-1_12.
Texto completo da fonteWang, Jinqing, Lingfeng Yu, Wei Gou, Qinyuan Fan, Rongbin Zhao e Bo Xia. "Microwave Holography Measurement on Seshan 25m Parabolic Antenna and the Assessment of the Accuracy". In Recent Advances in Computer Science and Information Engineering, 109–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25769-8_16.
Texto completo da fonteRahmat-Samii, Y. "Antenna Diagnosis by Microwave Holographic Metrology". In Electromagnetic Modelling and Measurements for Analysis and Synthesis Problems, 17–50. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3232-9_2.
Texto completo da fonteJayanthy, Maniam, N. Selvanathan, M. Abu-Bakar, D. Smith, H. M. Elgabroun, P. M. Yeong e S. Senthil Kumar. "Microwave Holographic Imaging Technique for Tumour Detection". In 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006, 275–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68017-8_71.
Texto completo da fonteAnderson, A. P., e M. F. Adams. "Holographic and Tomographic Imaging with Microwaves and Ultrasound". In Inverse Methods in Electromagnetic Imaging, 1077–105. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5271-3_23.
Texto completo da fonteAnderson, A. P., e M. F. Adams. "Holographic and Tomographic Imaging with Microwaves and Ultrasound". In Inverse Methods in Electromagnetic Imaging, 1077–105. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-010-9444-3_62.
Texto completo da fonteWu, Gaoyang, Yuyong Xiong, Zhaoyu Liu, Guang Meng e Zhike Peng. "Full-Field Out-of-Plane Displacement Measurement Using Microwave Holographic Interferometry". In Proceedings of the UNIfied Conference of DAMAS, IncoME and TEPEN Conferences (UNIfied 2023), 175–84. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-49413-0_13.
Texto completo da fonteDuan, Yuhu. "Microwave Holographic Metrology of the Surface Accuracy of Reflector Antenna—Simulation Method". In Lecture Notes in Electrical Engineering, 103–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44687-4_10.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Microwave holography"
Kuwahara, Yoshihiko. "Microwave Holography for Breast Imaging". In 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT). IEEE, 2020. http://dx.doi.org/10.1109/rfit49453.2020.9226233.
Texto completo da fonteWilson, Scott A., e Ram M. Narayanan. "Compressive wideband microwave radar holography". In SPIE Defense + Security, editado por Kenneth I. Ranney e Armin Doerry. SPIE, 2014. http://dx.doi.org/10.1117/12.2050131.
Texto completo da fontePopov, A., I. Prokopovich e D. Edemskii. "Experimental implementation of microwave subsurface holography". In 2016 Days on Diffraction (DD). IEEE, 2016. http://dx.doi.org/10.1109/dd.2016.7756870.
Texto completo da fonteRavan, M., Reza K. Amineh e Natalia K. Nikolova. "Microwave holography for near-field imaging". In 2010 IEEE International Symposium Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting. IEEE, 2010. http://dx.doi.org/10.1109/aps.2010.5561682.
Texto completo da fonteWang, Lulu, Ray Simpkin e A. M. Al-Jumaily. "Holographic Microwave Imaging Array for Early Breast Cancer Detection". In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-85910.
Texto completo da fonteBabbitt, W. R. "Microwave signal processing with spatial-spectral holography". In 2005 IEEE LEOS Annual Meeting. IEEE, 2005. http://dx.doi.org/10.1109/leos.2005.1548268.
Texto completo da fonteZhuravlev, Andrei, Sergey Ivashov, Vladimir Razevig, Igor Vasiliev e Timothy Bechtel. "Shallow depth subsurface imaging with microwave holography". In SPIE Defense + Security, editado por Steven S. Bishop e Jason C. Isaacs. SPIE, 2014. http://dx.doi.org/10.1117/12.2051492.
Texto completo da fonteIvashov, Sergey I., Vladimir V. Razevig, Timothy D. Bechtel, Igor A. Vasiliev, Lorenzo Capineri e Andrey V. Zhuravlev. "Microwave holography for NDT of dielectric structures". In 2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS). IEEE, 2015. http://dx.doi.org/10.1109/comcas.2015.7360372.
Texto completo da fonteAhmed, Aijaz, Vineeta Kumari e Gyanendra Sheoran. "Concealed Object Detection using Microwave Transmission Holography". In 2022 International Conference on Intelligent Technologies (CONIT). IEEE, 2022. http://dx.doi.org/10.1109/conit55038.2022.9847723.
Texto completo da fonteTajik, D., A. D. Pitcher, D. S. Shumakov, N. K. Nikolova e J. W. Bandler. "Enhancing Quantitative Microwave Holography in Tissue Imaging". In 12th European Conference on Antennas and Propagation (EuCAP 2018). Institution of Engineering and Technology, 2018. http://dx.doi.org/10.1049/cp.2018.0784.
Texto completo da fonte