Literatura científica selecionada sobre o tema "Microtubules"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Microtubules".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Microtubules"
Ray, S., E. Meyhöfer, R. A. Milligan e J. Howard. "Kinesin follows the microtubule's protofilament axis." Journal of Cell Biology 121, n.º 5 (1 de junho de 1993): 1083–93. http://dx.doi.org/10.1083/jcb.121.5.1083.
Texto completo da fonteOokata, K., S. Hisanaga, E. Okumura e T. Kishimoto. "Association of p34cdc2/cyclin B complex with microtubules in starfish oocytes". Journal of Cell Science 105, n.º 4 (1 de agosto de 1993): 873–81. http://dx.doi.org/10.1242/jcs.105.4.873.
Texto completo da fonteLloyd, C. W., e B. Wells. "Microtubules are at the tips of root hairs and form helical patterns corresponding to inner wall fibrils". Journal of Cell Science 75, n.º 1 (1 de abril de 1985): 225–38. http://dx.doi.org/10.1242/jcs.75.1.225.
Texto completo da fonteLogan, Caitlin M., e A. Sue Menko. "Microtubules: Evolving roles and critical cellular interactions". Experimental Biology and Medicine 244, n.º 15 (6 de agosto de 2019): 1240–54. http://dx.doi.org/10.1177/1535370219867296.
Texto completo da fonteGittes, F., B. Mickey, J. Nettleton e J. Howard. "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape." Journal of Cell Biology 120, n.º 4 (15 de fevereiro de 1993): 923–34. http://dx.doi.org/10.1083/jcb.120.4.923.
Texto completo da fonteSider, J. R., C. A. Mandato, K. L. Weber, A. J. Zandy, D. Beach, R. J. Finst, J. Skoble e W. M. Bement. "Direct observation of microtubule-f-actin interaction in cell free lysates". Journal of Cell Science 112, n.º 12 (15 de junho de 1999): 1947–56. http://dx.doi.org/10.1242/jcs.112.12.1947.
Texto completo da fonteCassimeris, L., C. L. Rieder, G. Rupp e E. D. Salmon. "Stability of microtubule attachment to metaphase kinetochores in PtK1 cells". Journal of Cell Science 96, n.º 1 (1 de maio de 1990): 9–15. http://dx.doi.org/10.1242/jcs.96.1.9.
Texto completo da fonteXuHan, X., e A. A. M. Van Lammeren. "Microtubular configurations during endosperm development in Phaseolus vulgaris". Canadian Journal of Botany 72, n.º 10 (1 de outubro de 1994): 1489–95. http://dx.doi.org/10.1139/b94-183.
Texto completo da fonteInfante, A. S., M. S. Stein, Y. Zhai, G. G. Borisy e G. G. Gundersen. "Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap". Journal of Cell Science 113, n.º 22 (15 de novembro de 2000): 3907–19. http://dx.doi.org/10.1242/jcs.113.22.3907.
Texto completo da fonteUyeda, T. Q., e M. Furuya. "Evidence for active interactions between microfilaments and microtubules in myxomycete flagellates." Journal of Cell Biology 108, n.º 5 (1 de maio de 1989): 1727–35. http://dx.doi.org/10.1083/jcb.108.5.1727.
Texto completo da fonteTeses / dissertações sobre o assunto "Microtubules"
Schaedel, Laura. "Les propriétés mécaniques des microtubules". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY010/document.
Texto completo da fonteMicrotubules—which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport—can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules’ adaptation to mechanical stresses
Barlukova, Ayuna. "Dynamic instability of microtubules and effect of microtubule targeting agents". Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0064.
Texto completo da fonteThe aim of this thesis is to design new mathematical models that are able to appropriately describe dynamic instability of a population of microtubules (MTs) and effect of drugs on MT dynamics. MT dynamic instability play an important role in the processes of mitosis and cell migration and, thus, in cancer progression. Dynamic instability is a complex process that involves different states of tubulin (polymerized or non-polymerized, GTP-tubulin or GDPtubulin that correspond to two different energetic states of tubulin dimers) that resulted from chemical processes (polymerization, depolymerization, hydrolysis, recycling, nucleation) linking these different states of tubulin. Description of this complexity by mathematical models enables one to test biological hypotheses concerning the impact of each process and action of drugs on microtubule dynamics. Recent observations show that MT dynamics depends on aging of MT. One of the aims of the work is to test the hypothesis that MT aging results from the acceleration of the GTP hydrolysis. We construct for that new models that couple two multidimensional transport equations with two ordinary differential equations involving integral terms. We have calibrated our models on the basis of experimental data; tested biological hypothesis on mechanism of aging process; performed a sensitivity analysis of the model with respect to parameters describing chemical processes; and tested hypotheses concerning actions of drugs
Paez, Claudia. "Etude fonctionnelle de la protéine associée aux microtubules XMAP215/ch-TOG". Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00597065.
Texto completo da fonteRovini, Amandine. "De l'extrémité des microtubules aux mitochondries dans la neuroprotection mediee par l'olesoxime : vers une meilleure compréhension des mécanismes d'action des agents anti-microtubules". Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM5512.
Texto completo da fonteNowadays, the so-called Microtubule Targeting Agents (MTAs) remain benchmark clinical treatments displaying high efficiency and are still widely used against a broad spectrum of tumors and hemopathies. The new compounds in clinical development and the discovery of their anti-angiogenic properties make them a family booming. However, MTAs treatment is limited by the occurrence of neurological toxicities that greatly impair patients quality of life and which mechanisms of action are still poorly understood. The current absence of really efficient curative of preventive strategies underline the complexity of MTA mechanisms of action. In the framework of the “MitoTarget” project from the 7th PCRD,lead by the industrial partner Trophos, we aimed to precise MTA neurotoxic mechanisms and to evaluate neuroprotective potential of olesoxime, a compound that already showed to be efficient in various models of neurodegenerative diseases. Our data show that microtubular (microtubule dynamics parameters, EB1 protein localization) and mitochondria (mitochondria) networks, MTA targeted compartments in cancer cells, are damaged in neuronal-like cells. Interestingly, olesoxime neuroprotective activity implies preservation of both microtubule and mitochondria from MTA-induced damages. This work highlights the original mechanism of action of olesoxime as the first neuroprotective agent able to act on both microtubule and mitochondria and underlines the strengthened link existing between these compartments. It thus gave rise to two side projects with the aim to (i) decipher microtubule-mitochondria interconnections in response to MTA treatment; (ii) precise the importance and regulation of EB1 in the anti-migratory efficacy of MTA by looking at EB1 post-translational modifications. Altogether, the data obtained incite to keep on characterizing mechanisms involved in response to MTA in order to optimize the existing therapeutic strategies
Gaidar, Sergii, e Stefan Diez. "Dancing along microtubules". Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-182537.
Texto completo da fontePeronne, Lauralie. "Caractérisation d'un nouveau composé pharmacologique qui potentialise la réponse des cellules au paclitaxel (Taxol®)". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAV003.
Texto completo da fonteMicrotubules (MTs) targeting agents are a powerful weapon in the war against aggressive cancers. Paclitaxel (PTX) has been used successfully for the treatment of solid tumors for decades. Several features, including side-effects and resistance of some cancers make this drug not always effective. With the aim to identify new chemical compounds that sensitize cells to paclitaxel we screened a library of 8,000 compounds, to select those not toxic for cell cultures when applied alone, that become toxic when applied in combination with a non-toxic dose of paclitaxel. This lead to the selection of a carbazole derivative: carba1. In cells, the carba1/PTX combination has a greater cytotoxic effect than the addition of the effects of each drug assayed separately, indicating a synergistic effect. In addition, in-depth phenotypic analyzes indicate that the administration of carba1 amplify the effects of PTX.High doses of carba1 induce a cell blockade in prometaphase, but do not alter the MT network in interphase or mitosis. In contrast, in vitro, carba1 targets the tubulin colchicine binding site, causing a delay and a decrease in MT polymerization. Genetic studies conducted on yeast indicated other potential additional targets including CENP-E, an essential kinesin for chromosome alignment during mitosis.Studies conducted on a preclinical mouse model of aggressive breast cancer (orthotopic grafts) revealed that carba1 alone and carba1/PTX showed no toxicity. In addition, the anti-tumor and anti-metastatic effects of the carba1/PTX combination on these models have been encouraging, but an optimization of the posology is still needed. Carba1 is a new molecule, with previously unknown applications. This is why a declaration of invention, with a view to filing a patent, has been submitted to the CNRS
Le, Grand Marion. "La protéine Akt, lien entre mitochondries et microtubules dans le mécanisme d'action des agents anti-microtubules ou quand les MTA s'invitent dans de nouvelles stratégies thérapeutiques". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM5017/document.
Texto completo da fonteMicrotubule-Targeting Agents (MTA) are a broad group of anticancer drugs that are currently administered in a lot of cancers. Nevertheless, they can cause undesired side effects and can lose their effectiveness as a result of resistance development. The main objective of my PhD work was to characterize the MTA’s mechanism of action in order to optimize their administration in the future. In the first part, we demonstrated the important role of the kinase Akt in MTA effects. In the second part, we evaluated the interest to combine MTA with anti-Akt drugs. We observed that MTA efficacy is highly important with Akt targeting drugs, particularly in lung adenocarcinoma. These promising results will need further explorations in order to develop more convenient cancer therapy strategies
Gallaud, Emmanuel. "Caractérisation du rôle d'Ensconsine / MAP7 dans la dynamique des microtubules et des centrosomes". Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S004/document.
Texto completo da fonteMitosis is a key step of the cell cycle that allows the mother cell to segregate its replicated genome equally into the two daughter cells. To do so, the cell assembles a highly dynamic structure composed of microtubules called the mitotic spindle. Additionally to its role in the faithful segregation of chromosomes, the mitotic spindle defines the axis of cell division. This phenomenon is particularly important for the asymmetric cell division in which cell fate determinants have to be unequally distributed between the two daughter cells. Spindle assembly and dynamics are subtly regulated by numerous microtubules-associated proteins. During my PhD, we identified using mass spectrometry, 855 proteins establishing the Drosophila embryo microtubule interactome. An RNAi screen was performed in the larval central nervous system for 96 poorly described genes, in order to identify new mitotic regulators. Based on microtubule interaction and mitotic phenotype, among 18 candidates we focused on Ensconsin/MAP7. We have shown that Ensconsin is associated with spindle microtubules and promotes their polymerization. Neuroblasts from mutant larvae display shorter spindles and a longer mitosis duration. This mitotic delay is a consequence of an extended activation of the spindle assembly checkpoint, which is essential for the proper chromosome segregation in the absence of Ensconsin. This study also showed that, in association with its interphase partner Kinesin-1, Ensconsin is involved in centrosome separation during interphase. As a result, mother and daughter centrosomes are randomly distributed between the daughter cells. In conclusion, we highlighted two news functions of Ensconsin : first, this protein promotes microtubule polymerization and is involved in spindle assembly ; second, Ensconsin and its partner Kinesin-1 regulate centrosome dynamics
METOZ, FREDERIC. "Reconstruction tridimensionnelle de microtubules". Université Joseph Fourier (Grenoble), 1996. http://www.theses.fr/1996GRE10118.
Texto completo da fonteArslan, Mélis. "Micromechanical modeling of microtubules". Paris, ENMP, 2010. http://www.theses.fr/2010ENMP1684.
Texto completo da fonteMicrotubules serve as one of the structural components of the cell and take place in some of the important cellular functions such as mitosis and vesicular transport. Microtubules comprise of tubulin subunits tubulin dimers arranged in a cylindrical beta and formed by alpha hollow tube structure with a diameter of 20nm. They are typically comprised of 13 or 14 protofilaments arranged in spiral configurations. The longitudinal bonds between the tubulin dimers are much stiffer and stronger than the lateral bonds. This implies the anisotropic structure and properties of the microtubule. In this work, the aim is to define a complete set of elastic properties that capture the atomistic behavior and track the deformation of the microtubules under different loading conditions. A seamless microtubule wall is represented as a two dimensional triangulated lattice of dimers from which a representative volume element can be defined. A harmonic potential is adapted for the dimer–dimer interactions. Estimating the lattice elastic constants and following the methodology from the analysis of the mechanical behavior of triangulated spectrin network of the red blood cell membrane (Arslan and Boyce, 2006); a general continuum level constitutive model of the mechanical behavior of the microtubule lattice wall is developed. The model together with the experimental data given in the literature provides an insight to defining the parameters required for the discrete numerical model created in finite element analysis medium. The three point bending simulations for a microtubule modeled using shell elements, give tube bending stiffness values that are in accordance with the experimental bending stiffness values. The micrographs also show that shrinking ends of microtubules (due to microtubule instabilities) curl out. This implies the existence of prestress. A “connector model” is proposed to include the effect of the prestress and to capture the dynamic instabilities of microtubules
Livros sobre o assunto "Microtubules"
S, Hyams Jeremy, e Lloyd Clive W, eds. Microtubules. New York: Wiley-Liss, 1994.
Encontre o texto completo da fonteInternational Symposium on Microtubules and Microtubule Inhibitors (3rd 1985 Beerse, Belgium). Microtubules and microtubule inhibitors, 1985: Proceedings of the 3rd International Symposium on Microtubules and Microtubule Inhibitors, Beerse, Belgium, 3-6 September, 1985. Editado por Brabander M. de, Mey J. de, Janssen Research Foundation e Belgian Society for Cell Biology. Amsterdam: Elsevier Science, 1985.
Encontre o texto completo da fonteNick, Peter, ed. Plant Microtubules. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77178-4.
Texto completo da fonteNick, Peter, ed. Plant Microtubules. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-22300-0.
Texto completo da fonteInternational Symposium on Microtubules and Microtubule Inhibitors (3rd 1985 Beerse). Microtubules and microtubule inhibitors, 1985: Proceedings on the 3rd International Symposium on Microtubules and Microtubule Inhibitors. Beerse, Belgium, 3-6 September, 1985. Editado por Brabander M. de, Mey J. de, Janssen Research Foundation e Belgian Society for Cell Biology. Oxford: Elsevier, 1985.
Encontre o texto completo da fonteservice), ScienceDirect (Online, ed. Microtubules: In vivo. Amsterdam: Elsevier/Academic Press, 2010.
Encontre o texto completo da fonteservice), ScienceDirect (Online, ed. Microtubules, in vitro. Amsterdam: Elsevier/Academic Press, 2010.
Encontre o texto completo da fonteLutz, Regina Anna. Regulation of Polarity by Microtubules. [New York, N.Y.?]: [publisher not identified], 2015.
Encontre o texto completo da fonteSutton, Michael Mark. The Influence of Microtubules and Microtubule-Based Structures on Osteoclast and CD4+ T Cell Function. [New York, N.Y.?]: [publisher not identified], 2022.
Encontre o texto completo da fonteWróbel, Zygmunt. Automatyczne metody analizy orientacji mikrotubul. Katowice: Wydawn. Uniwersytetu Śląskiego, 2007.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Microtubules"
Wade, Richard H. "Microtubules". In Methods in Molecular Medicine™, 1–16. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-442-1_1.
Texto completo da fonteWasteneys, Geoffrey O., e Bettina Lechner. "Microtubules". In Cellular Domains, 229–43. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118015759.ch14.
Texto completo da fonteSabnis, D. D. "Microtubules". In Cell Components, 375–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82587-3_18.
Texto completo da fonteVisintin, Rosella. "Microtubules". In Encyclopedia of Systems Biology, 1358. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1432.
Texto completo da fonteSchliwa, Manfred. "Microtubules". In The Cytoskeleton, 47–82. Vienna: Springer Vienna, 1986. http://dx.doi.org/10.1007/978-3-7091-7667-2_3.
Texto completo da fonteGooch, Jan W. "Microtubules". In Encyclopedic Dictionary of Polymers, 907. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14230.
Texto completo da fonteDráber, Pavel, e Eduarda Dráberová. "Microtubules". In Cytoskeleton and Human Disease, 29–53. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-788-0_2.
Texto completo da fonteGupta, G. S. "Microtubules". In Proteomics of Spermatogenesis, 167–90. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/0-387-27655-6_8.
Texto completo da fonteIwanski, Malina K., Eugene A. Katrukha e Lukas C. Kapitein. "Lattice Light-Sheet Motor-PAINT: A Method to Map the Orientations of Microtubules in Complex Three-Dimensional Arrays". In Single Molecule Analysis, 151–74. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3377-9_8.
Texto completo da fonteHeinlein, Manfred. "Microtubules and Viral Movement". In Plant Microtubules, 141–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/7089_2007_147.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Microtubules"
Sinha, S., e D. D. Wagner. "INTACT MICROTUBULES ARE NECESSARY FOR COMPLETE PROCESSING, STORAGE AND REGULATED SECRETION OF VON WILLEBRAND FACTOR BY ENDOTHELIAL CELLS". In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642914.
Texto completo da fonteGhavanoo, E., F. Daneshmand e M. Amabili. "Two-Dimensional Shell Vibration of Microtubule in Living Cell". In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30636.
Texto completo da fonteAllen, Kathleen B., e Bradley E. Layton. "Mechanical Neural Growth Models". In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79445.
Texto completo da fonteKuznetsov, A. V., A. A. Avramenko e D. G. Blinov. "Simulation of Traffic Jam Formation in Fast Axonal Transport". In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88345.
Texto completo da fonteMehrbod, Mehrdad, e Mohammad R. K. Mofrad. "On the Mechanics of Microtubule Filaments". In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53896.
Texto completo da fonteAprodu, Iuliana, Alfonso Gautieri, Franco M. Montevecchi, Alberto Redaelli e Monica Soncini. "What Molecular Dynamics Simulations Can Tell Us About Mechanical Properties of Kinesin and Its Interaction With Tubulin". In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176316.
Texto completo da fonteTan, X. Gary, Andrzej J. Przekwas e Raj K. Gupta. "Macro-Micro Biomechanics Finite Element Modeling of Brain Injury Under Concussive Loadings". In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66218.
Texto completo da fonteOswald, Elizabeth S., Pen-hsiu Grace Chao, J. Chloe Bulinski, Gerard A. Ateshian e Clark T. Hung. "The Role of Microtubule Organization in Chondrocyte Response to Osmotic Loading". In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176634.
Texto completo da fonteHuang, Y., M. Uppalapati, W. Hancock e T. Jackson. "Movement Control of Confined Microtubules". In 2006 64th Device Research Conference. IEEE, 2006. http://dx.doi.org/10.1109/drc.2006.305158.
Texto completo da fonteMikheenko, Pavlo. "Ideal Diamagnetism in Brain Microtubules". In 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2022. http://dx.doi.org/10.1109/nap55339.2022.9934729.
Texto completo da fonteRelatórios de organizações sobre o assunto "Microtubules"
Frisch, Steven M. Are Microtubules Involved in Anoikis. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2001. http://dx.doi.org/10.21236/ada397720.
Texto completo da fonteBrumlik, Charles J., e Charles R. Martin. Template Synthesis of Metal Microtubules. Fort Belvoir, VA: Defense Technical Information Center, março de 1991. http://dx.doi.org/10.21236/ada232827.
Texto completo da fonteMargerum, J. D. Applications Research Studies of Microtubules. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1990. http://dx.doi.org/10.21236/ada225694.
Texto completo da fonteFisher, D. D., e R. J. Cyr. Calmodulin immunolocalization to cortical microtubules is calcium independent. Office of Scientific and Technical Information (OSTI), dezembro de 1992. http://dx.doi.org/10.2172/10156994.
Texto completo da fonteFisher, D. D., e R. J. Cyr. Calmodulin immunolocalization to cortical microtubules is calcium independent. Office of Scientific and Technical Information (OSTI), janeiro de 1992. http://dx.doi.org/10.2172/6434308.
Texto completo da fonteCyr, R. Role of Ca[sup ++]/calmodulin in the regulation of microtubules in higher plants. Office of Scientific and Technical Information (OSTI), janeiro de 1991. http://dx.doi.org/10.2172/7137008.
Texto completo da fonteCyr, R. Role of Ca[sup ++]/calmodulin in the regulation of microtubules in higher plants. Office of Scientific and Technical Information (OSTI), janeiro de 1992. http://dx.doi.org/10.2172/6528240.
Texto completo da fonteCyr, R. Role of Ca{sup ++}/calmodulin in the regulation of microtubules in higher plants. Progress report, FY91. Office of Scientific and Technical Information (OSTI), dezembro de 1991. http://dx.doi.org/10.2172/10109506.
Texto completo da fonteCyr, R. Role of Ca{sup ++}/calmodulin in the regulation of microtubules in higher plants. Progress report, FY 1992. Office of Scientific and Technical Information (OSTI), dezembro de 1992. http://dx.doi.org/10.2172/10159592.
Texto completo da fonteBulinski, Chloe J. Novel Microtubule-Stabilizing Reagents. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2005. http://dx.doi.org/10.21236/ada446411.
Texto completo da fonte