Artigos de revistas sobre o tema "Microstructures γ-γ'"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Microstructures γ-γ'".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Mohanty, R. R., e Yong Ho Sohn. "Phase Field Modeling of Interdiffusion Microstructure in Ni-Cr-Al Diffusion Couples". Materials Science Forum 595-598 (setembro de 2008): 199–206. http://dx.doi.org/10.4028/www.scientific.net/msf.595-598.199.
Texto completo da fonteXue, Yan Peng, Xiao Guang Wang, Jin Qian Zhao, Zhen Xue Shi, Shi Zhong liu e Jia Rrong Li. "Effect of Heat Treatment on Microstructure Evolution in DD9 Single Crystal Turbine Blade". Materials Science Forum 1072 (25 de outubro de 2022): 95–102. http://dx.doi.org/10.4028/p-26qh91.
Texto completo da fonteGuo, X., P. He, K. Xu, P. Y. Chen, B. Chen e S. B. Huo. "Microstructural evolution and liquation cracking in the partially melted zone of deposited ERNiCrFe-13 filler metal subjected to TIG refusion". Welding in the World 65, n.º 5 (9 de fevereiro de 2021): 825–32. http://dx.doi.org/10.1007/s40194-021-01073-8.
Texto completo da fonteDing, Qingqing, Hongbin Bei, Xinbao Zhao, Yanfei Gao e Ze Zhang. "Processing, Microstructures and Mechanical Properties of a Ni-Based Single Crystal Superalloy". Crystals 10, n.º 7 (3 de julho de 2020): 572. http://dx.doi.org/10.3390/cryst10070572.
Texto completo da fonteWang, Chan, Duoqi Shi e Shaolin Li. "A Study on Establishing a Microstructure-Related Hardness Model with Precipitate Segmentation Using Deep Learning Method". Materials 13, n.º 5 (10 de março de 2020): 1256. http://dx.doi.org/10.3390/ma13051256.
Texto completo da fontePrakash, Aruna, e Erik Bitzek. "Idealized vs. Realistic Microstructures: An Atomistic Simulation Case Study on γ/γ′ Microstructures". Materials 10, n.º 1 (23 de janeiro de 2017): 88. http://dx.doi.org/10.3390/ma10010088.
Texto completo da fontePan, Qinghai, Yongfeng Sui, Peijiong Yu, Xinbao Zhao, Yuan Cheng, Quanzhao Yue, Yuefeng Gu e Ze Zhang. "Effect of Heat Treatment Schedules on Creep Performance of Ni-Based Superalloy Mar-M247 at 871 °C and 250 Mpa". Metals 13, n.º 7 (14 de julho de 2023): 1270. http://dx.doi.org/10.3390/met13071270.
Texto completo da fonteKONG, FANTAO, e YUYONG CHEN. "EFFECTS OF THERMO-MECHANICAL TREATMENTS ON MICROSTRUCTURE OF Ti-43Al-9V-Y ALLOY". International Journal of Modern Physics B 23, n.º 06n07 (20 de março de 2009): 1009–13. http://dx.doi.org/10.1142/s0217979209060385.
Texto completo da fonteXu, Wen Yong, Zi Chao Peng, Mu Zi Li e Minh Son Pham. "Microstructure Analysis and Creep Behaviour Modelling of Powder Metallurgy Superalloy". Materials Science Forum 913 (fevereiro de 2018): 134–40. http://dx.doi.org/10.4028/www.scientific.net/msf.913.134.
Texto completo da fonteWang, Xiao-Yan, Meng Li e Zhi-Xun Wen. "The Effect of the Cooling Rates on the Microstructure and High-Temperature Mechanical Properties of a Nickel-Based Single Crystal Superalloy". Materials 13, n.º 19 (24 de setembro de 2020): 4256. http://dx.doi.org/10.3390/ma13194256.
Texto completo da fonteWang, Xiao Guang, Jia Rong Li, Zhen Xue Shi e Shi Zhong Liu. "Effect of Solid Solution Heat Treatment on Microstructures of the Third Generation Single Crystal Superalloy DD9". Materials Science Forum 747-748 (fevereiro de 2013): 549–58. http://dx.doi.org/10.4028/www.scientific.net/msf.747-748.549.
Texto completo da fonteWartbichler, Reinhold, Tobias Maiwald-Immer, Fabian Pürstl e Helmut Clemens. "Laser Powder Bed Fusion of Intermetallic Titanium Aluminide Alloys Using a Novel Process Chamber Heating System: A Study on Feasibility and Microstructural Optimization for Creep Performance". Metals 12, n.º 12 (5 de dezembro de 2022): 2087. http://dx.doi.org/10.3390/met12122087.
Texto completo da fonteThi Chieu, Le, Sai Manh Thang, Nguyen Duong Nam e Pham Mai Khanh. "The Effect of Deformation on Microstructure of Cu-Ni-Sn Aging Alloys". Key Engineering Materials 682 (fevereiro de 2016): 113–18. http://dx.doi.org/10.4028/www.scientific.net/kem.682.113.
Texto completo da fonteQuadir, M. Z., Y. Y. Tse, K. T. Lam e B. J. Duggan. "Rolling and Recrystallization Texture of Cold Rolled IF Steel: A Study from Low to High Deformation". Materials Science Forum 467-470 (outubro de 2004): 311–16. http://dx.doi.org/10.4028/www.scientific.net/msf.467-470.311.
Texto completo da fonteTetsui, Toshimitsu. "Effect of Microstructure on Impact Resistance and Machinability of TiAl Alloys for Jet Engine Turbine Blade Applications". Metals 13, n.º 7 (5 de julho de 2023): 1235. http://dx.doi.org/10.3390/met13071235.
Texto completo da fonteMaruyama, Naoki, T. Ogawa e M. Takahashi. "Recrystallisation at Intercritical Annealing in Low Carbon Steels". Materials Science Forum 558-559 (outubro de 2007): 247–52. http://dx.doi.org/10.4028/www.scientific.net/msf.558-559.247.
Texto completo da fonteHausmann, D., C. Solís, L. P. Freund, N. Volz, A. Heinemann, M. Göken, R. Gilles e S. Neumeier. "Enhancing the High-Temperature Strength of a Co-Base Superalloy by Optimizing the γ/γ′ Microstructure". Metals 10, n.º 3 (28 de fevereiro de 2020): 321. http://dx.doi.org/10.3390/met10030321.
Texto completo da fontePinz, M., G. Weber, W. C. Lenthe, M. D. Uchic, T. M. Pollock e S. Ghosh. "Microstructure and property based statistically equivalent RVEs for intragranular γ−γ' microstructures of Ni-based superalloys". Acta Materialia 157 (setembro de 2018): 245–58. http://dx.doi.org/10.1016/j.actamat.2018.07.034.
Texto completo da fonteHashimoto, Keizo. "High-Temperature Tensile Properties of Ti-Al-X (X=Cr,W) Consisting of α2, β and γ in Three Phases". Materials Science Forum 706-709 (janeiro de 2012): 1066–70. http://dx.doi.org/10.4028/www.scientific.net/msf.706-709.1066.
Texto completo da fonteLarson, D. J., M. K. Miller, H. Inui e M. Yamaguchi. "Atom Probe Field Ion Microscopy of Poly Synthetically Twinned Titanium Aluminide". Microscopy and Microanalysis 4, S2 (julho de 1998): 102–3. http://dx.doi.org/10.1017/s1431927600020638.
Texto completo da fonteZhang, Shuling, Ning Cui, Wei Sun e Qiucheng Li. "Microstructural Characterization and Crack Propagation Behavior of a Novel β-Solidifying TiAl Alloy". Metals 11, n.º 8 (2 de agosto de 2021): 1231. http://dx.doi.org/10.3390/met11081231.
Texto completo da fonteSumitani, Takahiro, Katsushi Tanaka e Haruyuki Inui. "Microstructural evolution of monocrystalline Co–Al–W-based superalloys by high-temperature creep deformation". MRS Proceedings 1516 (2012): 221–26. http://dx.doi.org/10.1557/opl.2012.1683.
Texto completo da fonteVillanueva Bravo, Sergio, Kaoru Yamamoto, Hirofumi Miyahara e Keisaku Ogi. "Control of Carbides and Graphite in Cast Irons Type Alloy’s Microstructures for Hot Strip Mills". Journal of Metallurgy 2012 (14 de março de 2012): 1–6. http://dx.doi.org/10.1155/2012/438659.
Texto completo da fonteYang, Wan Peng, Jia Rong Li, Shi Zhong Liu, Jin Qian Zhao, Zhen Xue Shi e Xiao Guang Wang. "Microstructures of Low Angle Boundaries of a Third Generation Single Crystal Superalloy DD9". Materials Science Forum 898 (junho de 2017): 413–21. http://dx.doi.org/10.4028/www.scientific.net/msf.898.413.
Texto completo da fonteHooghan, Tejpal Kaur, Russell F. Pinizzotto, John H. Watkins e Toru Okabe. "A study of a low copper dental amalgam by analytical transmission electron microscopy". Journal of Materials Research 11, n.º 10 (outubro de 1996): 2474–85. http://dx.doi.org/10.1557/jmr.1996.0312.
Texto completo da fonteHorton, J. A., C. T. Liu e M. L. Santella. "Microstructures of Ni3Al alloyed with iron". Proceedings, annual meeting, Electron Microscopy Society of America 45 (agosto de 1987): 210–11. http://dx.doi.org/10.1017/s0424820100125956.
Texto completo da fonteXue, Yanpeng, Xiaoguang Wang, Jinqian Zhao, Zhenxue Shi, Shizhong Liu e Jiarong Li. "Effect of Withdrawal Rate on Solidification Microstructures of DD9 Single Crystal Turbine Blade". Materials 16, n.º 9 (27 de abril de 2023): 3409. http://dx.doi.org/10.3390/ma16093409.
Texto completo da fonteRojhirunsakool, Tanaporn, Duangkwan Thongpian, Nutthita Chuankrerkkul e Panyawat Wangyao. "Effect of Pre-Weld Heat Treatment Temperatures on TIG Welded Microstructures on Nickel Base Superalloy, GTD-111". Key Engineering Materials 658 (julho de 2015): 14–18. http://dx.doi.org/10.4028/www.scientific.net/kem.658.14.
Texto completo da fonteSun, W., X. Z. Qin, W. Wang, T. T. Wang, Yong An Guo, J. T. Guo, Lang Hong Lou e Lan Zhang Zhou. "Effects of Nb/Ti Ratio on the Microstructures of Two Experimental Ni-Based Cast Superalloys". Materials Science Forum 747-748 (fevereiro de 2013): 629–35. http://dx.doi.org/10.4028/www.scientific.net/msf.747-748.629.
Texto completo da fonteSakata, Masahiro, Jong Yeong Oh, Ken Cho, Hiroyuki Y. Yasuda, Mitsuharu Todai, Takayoshi Nakano, Ayako Ikeda, Minoru Ueda e Masao Takeyama. "Effects of Heat Treatment on Unique Layered Microstructure and Tensile Properties of TiAl Fabricated by Electron Beam Melting". Materials Science Forum 941 (dezembro de 2018): 1366–71. http://dx.doi.org/10.4028/www.scientific.net/msf.941.1366.
Texto completo da fonteLacaze, Jacques, e Alain Hazotte. "Directionally Solidified Materials: Nickel-base Superalloys for Gas Turbines". Textures and Microstructures 13, n.º 1 (1 de janeiro de 1990): 1–14. http://dx.doi.org/10.1155/tsm.13.1.
Texto completo da fonteSamal, MK. "Development of a model for simulation of micro-twin and corresponding asymmetry in high temperature deformation behavior of nickel-based superalloy single crystals using crystal plasticity-based framework". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, n.º 14 (22 de março de 2016): 2621–35. http://dx.doi.org/10.1177/0954406216639073.
Texto completo da fonteQiao, Mengmeng, Tao Zhang e Ming Miao. "Minced Beef Meat Paste Characteristics: Gel Properties, Water Distribution, and Microstructures Regulated by Medium Molecular Mass of γ-Poly-Glutamic Acid". Foods 13, n.º 4 (6 de fevereiro de 2024): 510. http://dx.doi.org/10.3390/foods13040510.
Texto completo da fonteTian, Su Gui, Xiao Xia Wu, Hui Chen Yu, Hao Fang Sun e Ze Hui Jiao. "Microstructures and Creep Behavior of As-Cast TiAl-Nb Alloy". Materials Science Forum 816 (abril de 2015): 572–77. http://dx.doi.org/10.4028/www.scientific.net/msf.816.572.
Texto completo da fontePan, Wan, Wang, Shen, Fu, Li, Dai e Yan. "An Investigation of Friction Coefficient on Microstructure and Texture Evolution of Interstitial-Free Steel during Warm Rolling and Subsequent Annealing". Crystals 9, n.º 11 (27 de outubro de 2019): 565. http://dx.doi.org/10.3390/cryst9110565.
Texto completo da fonteGalieva, E. V., E. Yu Klassman e V. A. Valitov. "Low-temperature superplastic deformation of the EK79 nickel-based superalloy with the mixed ultrafine-grained microstructure". Frontier materials & technologies, n.º 1 (2024): 19–27. http://dx.doi.org/10.18323/2782-4039-2024-1-67-2.
Texto completo da fonteProbst-Hein, M., A. Dlouhy e G. Eggeler. "Superposition of external and internal stress components in γ/γ'-microstructures and their effect on γ-channel dislocations". Le Journal de Physique IV 09, PR9 (setembro de 1999): Pr9–127—Pr9–136. http://dx.doi.org/10.1051/jp4:1999913.
Texto completo da fonteSingh, S., M. J. Mills e M. De Graef. "Dynamical scattering image simulations for two-phase γ–γ′ microstructures: A theoretical model". Ultramicroscopy 185 (fevereiro de 2018): 32–41. http://dx.doi.org/10.1016/j.ultramic.2017.11.008.
Texto completo da fonteKim, Won Yong. "High Temperature Strength of Ni-Al-Cr Based Alloys Containing Refractory Elements for Advanced Die Materials". Materials Science Forum 539-543 (março de 2007): 1589–94. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.1589.
Texto completo da fonteOehring, Michael, V. Küstner, Fritz Appel e Uwe Lorenz. "Analysis of the Solidification Microstructure of Multi- Component γ-TiAl Alloys". Materials Science Forum 539-543 (março de 2007): 1475–80. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.1475.
Texto completo da fonteDoi, Minoru, Takao Kozakai, Tomokazu Moritani e Shizuo Naito. "Two-Phase Microstructures of Gamma+Gamma-Prime Formed by Phase-Separations due to Heat-Treatments of Elastically Constrained Ni-Al-Ti Alloys". Materials Science Forum 539-543 (março de 2007): 3006–11. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.3006.
Texto completo da fonteZhao, Qian, Yong Kang Zhang, Cheng Yun Cui, Xi Gui Cui e Jin Zhong Lu. "Microstructure of Laser Cladded Cobalt-Based Alloy Coating on T10 Tool Steel". Key Engineering Materials 464 (janeiro de 2011): 694–97. http://dx.doi.org/10.4028/www.scientific.net/kem.464.694.
Texto completo da fonteZhang, Wei Guo, Xue Mei Yi e Chu Ang Feng. "Heat Treatment Microstructures of a Directionally Solidified Nickel Base Superalloy under High Temperature Gradient". Materials Science Forum 788 (abril de 2014): 519–24. http://dx.doi.org/10.4028/www.scientific.net/msf.788.519.
Texto completo da fonteYang, Shu Yu, Min Jiang e Lei Wang. "New-Type Co-Based Superalloys Designed by CALPHAD Method". Materials Science Forum 816 (abril de 2015): 578–80. http://dx.doi.org/10.4028/www.scientific.net/msf.816.578.
Texto completo da fonteWang, Xin Mei, M. Y. Cao, S. W. Li, Z. Y. Yu e Z. F. Yue. "The Influence of γ/γ′ Morphology on the Rafting and Stress Distribution of Nickel-Based Superalloys Loaded in [0 0 1] Direction". Materials Science Forum 895 (março de 2017): 14–19. http://dx.doi.org/10.4028/www.scientific.net/msf.895.14.
Texto completo da fonteLi, Jing Yuan, Sumio Sugiyama e Jun Yanagimoto. "Microstructural Evolution and Deformation Behavior of Stainless Steel in Semi-Solid State". Solid State Phenomena 116-117 (outubro de 2006): 681–85. http://dx.doi.org/10.4028/www.scientific.net/ssp.116-117.681.
Texto completo da fonteTsuno, Nobuyasu, Akihiro Sato, Katsushi Tanaka e Haruyuki Inui. "Evolution of Raft Structure during Creep Deformation of the Ni-Based Single-Crystal Superalloy TMS-138". Advanced Materials Research 278 (julho de 2011): 19–24. http://dx.doi.org/10.4028/www.scientific.net/amr.278.19.
Texto completo da fonteReyes Tirado, Fernando L., Jacques Perrin Toinin e David C. Dunand. "γ+γ′ microstructures in the Co-Ta-V and Co-Nb-V ternary systems". Acta Materialia 151 (junho de 2018): 137–48. http://dx.doi.org/10.1016/j.actamat.2018.03.057.
Texto completo da fonteClément, Nicole, Mustafa Benyoucef, M. Legros, Pierre Caron e Armand Coujou. "In Situ Deformation at 850°C of Standard and Rafted Microstructures of Nickel Base Superalloys". Materials Science Forum 509 (março de 2006): 57–62. http://dx.doi.org/10.4028/www.scientific.net/msf.509.57.
Texto completo da fonteHorton, J. A., e C. T. Liu. "Microstructures of Ni3Al alloys as a function of Cr and Al levels". Proceedings, annual meeting, Electron Microscopy Society of America 47 (6 de agosto de 1989): 306–7. http://dx.doi.org/10.1017/s0424820100153506.
Texto completo da fonte