Literatura científica selecionada sobre o tema "Microstructure"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Microstructure".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Microstructure"
Suzuki, Asuka, Yusuke Sasa, Makoto Kobashi, Masaki Kato, Masahito Segawa, Yusuke Shimono e Sukeharu Nomoto. "Persistent Homology Analysis of the Microstructure of Laser-Powder-Bed-Fused Al–12Si Alloy". Materials 16, n.º 22 (18 de novembro de 2023): 7228. http://dx.doi.org/10.3390/ma16227228.
Texto completo da fonteZeng, Qiu Lian, Zhong Guang Wang e J. K. Shang. "Microstructural Effects on Low Cycle Fatigue of Sn-3.8Ag-0.7Cu Pb-Free Solder". Key Engineering Materials 345-346 (agosto de 2007): 239–42. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.239.
Texto completo da fonteTrzciński, Jerzy, e Emilia Wójcik. "Application of microstructure classification for the assessment of the variability of geological-engineering and pore space properties in clay soils". Open Geosciences 11, n.º 1 (12 de junho de 2019): 236–48. http://dx.doi.org/10.1515/geo-2019-0019.
Texto completo da fonteDolzhenko, Anastasiia, Marina Tikhonova, Rustam Kaibyshev e Andrey Belyakov. "Microstructures and Mechanical Properties of Steels and Alloys Subjected to Large-Strain Cold-to-Warm Deformation". Metals 12, n.º 3 (8 de março de 2022): 454. http://dx.doi.org/10.3390/met12030454.
Texto completo da fonteTian, Yan, Mingchun Zhao, Wenjian Liu, Jimou Zhang, Min Zhang, Hongying Li, Dengfeng Yin e Andrej Atrens. "Comparison on Tensile Characteristics of Plain C–Mn Steel with Ultrafine Grained Ferrite/Cementite Microstructure and Coarse Grained Ferrite/Pearlite Microstructure". Materials 14, n.º 9 (29 de abril de 2021): 2309. http://dx.doi.org/10.3390/ma14092309.
Texto completo da fonteHua, Tian, Ziyin Xiang, Xiangling Xia, Zhangling Li, Dandan Sun, Yuanzhao Wu, Yiwei Liu, Jie Shang, Jun Chen e Runwei Li. "A Sensitivity-Optimized Flexible Capacitive Pressure Sensor with Cylindrical Ladder Microstructural Dielectric Layers". Sensors 23, n.º 9 (27 de abril de 2023): 4323. http://dx.doi.org/10.3390/s23094323.
Texto completo da fonteMorri, A., L. Ceschini, M. Pellizzari, C. Menapace, F. Vettore e E. Veneri. "Effect of the Austempering Process on the Microstructure and Mechanical Properties of 27MnCrB5-2 Steel". Archives of Metallurgy and Materials 62, n.º 2 (1 de junho de 2017): 643–51. http://dx.doi.org/10.1515/amm-2017-0094.
Texto completo da fonteMüller, Martin, Marie Stiefel, Björn-Ivo Bachmann, Dominik Britz e Frank Mücklich. "Overview: Machine Learning for Segmentation and Classification of Complex Steel Microstructures". Metals 14, n.º 5 (7 de maio de 2024): 553. http://dx.doi.org/10.3390/met14050553.
Texto completo da fonteAbdalla, Ayad Omran, Astuty Amrin, Roslina Mohammad e M. A. Azmah Hanim. "Microstructural Study of Newly Designed Ti-6Al-1Fe Alloy through Deformation". Solid State Phenomena 264 (setembro de 2017): 54–57. http://dx.doi.org/10.4028/www.scientific.net/ssp.264.54.
Texto completo da fonteGallardo-Basile, Francisco-José, Yannick Naunheim, Franz Roters e Martin Diehl. "Lath Martensite Microstructure Modeling: A High-Resolution Crystal Plasticity Simulation Study". Materials 14, n.º 3 (2 de fevereiro de 2021): 691. http://dx.doi.org/10.3390/ma14030691.
Texto completo da fonteTeses / dissertações sobre o assunto "Microstructure"
Jensen, Jens A. D. "Engineering of metal microstructures : process-microstructure-property relationships for electrodeposits /". Linköping : Univ, 2002. http://www.bibl.liu.se/liupubl/disp/disp2002/tek784s.pdf.
Texto completo da fonteSmith, Benjamin Daniel. "Microstructure-sensitive plasticity and fatigue of three titanium alloy microstructures". Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49237.
Texto completo da fonteDeCost, Brian L. "Microstructure Representations: Applied Computer Vision Methods for Microstructure Characterization". Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/764.
Texto completo da fonteVisarraga, Darrin Bernardo. "Heat transport models with distributed microstructure". Access restricted to users with UT Austin EID, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3036605.
Texto completo da fonteTse, Jonathan. "Market microstructure modelling". Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.540272.
Texto completo da fonteBorhani, Ehsan. "Microstructure and Mechanical Property of Heavily Deformed Al-Sc Alloy Having Different Starting Microstructures". 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/152522.
Texto completo da fonteLee, Eunha. "Microstructure evolution and microstructure/mechanical properties relationships in [alpha]+[beta] titanium alloys". Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1092756139.
Texto completo da fonteTitle from first page of PDF file. Document formatted into pages; contains xxiii, 229 p.; also includes graphics (some col.) Includes bibliographical references (p. 224-229). Available online via OhioLINK's ETD Center
Kong, Lingrong. "Comportement microstructural de l'argile de Shanghai et modèle élastoplastique avec prise en compte de la microstructure". Nantes, 2007. http://www.theses.fr/2007NANT2047.
Texto completo da fonteThe constitutive models of soft soils based on traditional macro-mechanics are sometimes not suitable to describe the stress – strain relations. Therefore, we developed a new constitutive model considering the microstructure of a marine soft clay on which physical and mechanical tests were carried out. In the first part, scanning electron microscope and X-scans aimed at identifying the microstructure of the clay and its evolution during one dimensional consolidation tests. Those methods also give some quantitative and useful information (particle shape, mean size and orientation) related to the applied vertical stress. We concluded that the soil exhibits a gradual damage and material anisotropy. These results were also compared to the results obtained on the same remolded clay. In the second part, mercury intrusion tests were carried out to investigate the relation between the pore size distribution and permeability. The main size distribution varied from 0. 2 µm to 1. 2 µm and decreased whereas the vertical stress increases. The hydraulic-radius model was then introduced to explain such an evolution. The third part concerns the description of the elasto-plastic model considering microstructure extended from the previous work of Chang and Hicher (2005) to the behavior of soft clays. The clay microstructure was assumed to be made of platelet aggregates which could not be destroyed during loading. The deformation was computed by integrating displacements at the particle contacts in all orientations. The behavior of contact planes was assumed to follow an elastic-plastic law based on a Mohr-Coulomb criterion. A Hertz-Mindlin’s elastic law was used for the elastic part and a double yield surface was used to reflect the plastic behavior. The predictions of the constitutive model were compared to experimental results for normally and over-consolidated clays under drained and undrained triaxial tests. They showed that the model was able to reproduce the main features of the clay behavior. Moreover, the model enables to describe the evolution of stresses between aggregates on the contact plane and therefore the failure of clays based on microstructural considerations. The fourth part was devoted to the analysis of anisotropic clays. A second-order symmetric fabric tensor was introduced to model the stiffness of contact planes, hardening, the dilation coefficient, to capture the inherent and stress-induced anisotropic behavior of clays. Drained and undrained triaxial tests with loading in vertical and horizontal directions were performed on Shanghai clay
Wearing, Cameron. "Sodicity and soil microstructure /". [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18523.pdf.
Texto completo da fonteHoffmann, Peter. "Essays in Market Microstructure". Doctoral thesis, Universitat Pompeu Fabra, 2011. http://hdl.handle.net/10803/38703.
Texto completo da fonteEsta tesis estudia tres temas diferentes de la microestructura de los mercados financieros. El capítulo 1 demuestra que fricciones en el acceso al mercado pueden desempeñar un papel significativo en la competencia entre plataformas de negociación de activos. El análisis de un conjunto de datos recientes de la actividad en acciones francesas y alemanas demuestra que los mercados primarios dominan debido a que el único mercado satélite expone los proveedores de liquidez a un riesgo excesivo de selección adversa, causado por una falta de noise traders. El capítulo 2 presenta un modelo teórico de formación de precios en un mercado dinámico con limit order book poblado por agentes humanos lentos y agentes algorítmicos rápidos. Se demuestra que, en la mayoría de los casos, la negociación algorítmica tiene un efecto negativo sobre el bienestar de agentes humanos. Por último, el capítulo 3 analiza empíricamente el papel de la transparencia pre-negociación en las subastas de apertura y de cierre. Comparando los mecanismos en las bolsas francesas y alemanas, encontramos que la transparencia está asociada con un volumen mayor, una liquidez mayor y un mejor price discovery.
Livros sobre o assunto "Microstructure"
Bennett, Richard H., e Matthew H. Hulbert. Clay Microstructure. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4684-2.
Texto completo da fonteAbergel, Frédéric, Jean-Philippe Bouchaud, Thierry Foucault, Charles-Albert Lehalle e Mathieu Rosenbaum, eds. Market Microstructure. Oxford, UK: John Wiley & Sons Ltd, 2012. http://dx.doi.org/10.1002/9781118673553.
Texto completo da fonteH, Hulbert Matthew, ed. Clay microstructure. Boston: International Human Resources Development Corp., 1986.
Encontre o texto completo da fonteCapriz, Gianfranco. Continua with Microstructure. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3584-2.
Texto completo da fonteEnamel Microstructure Workshop, University of Bonn (1994 Andernach, Rhine). Tooth enamel microstructure. Rotterdam: A.A. Balkema, 1997.
Encontre o texto completo da fonteCapriz, G. Continua with Microstructure. New York, NY: Springer New York, 1989.
Encontre o texto completo da fonteUnited States. National Aeronautics and Space Administration., ed. Microstructure: Property correlation. [Washington, D.C: National Aeronautics and Space Administration, 1990.
Encontre o texto completo da fontePeggs, ID, ed. Geosynthetics: Microstructure and Performance. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1990. http://dx.doi.org/10.1520/stp1076-eb.
Texto completo da fonteKinderlehrer, David, Richard James, Mitchell Luskin e Jerry L. Ericksen, eds. Microstructure and Phase Transition. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-8360-4.
Texto completo da fonteAxelrad, David R., e Wolfgang Muschik, eds. Constitutive Laws and Microstructure. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83303-8.
Texto completo da fonteCapítulos de livros sobre o assunto "Microstructure"
Fang, Fengzhou, e Nan Zhang. "Microstructure". In CIRP Encyclopedia of Production Engineering, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-35950-7_16727-1.
Texto completo da fonteRindler, Filip. "Microstructure". In Universitext, 227–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77637-8_9.
Texto completo da fonteMiller, Michael K. "Microstructure". In Bulk Metallic Glasses, 117–45. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-48921-6_5.
Texto completo da fonteFang, Fengzhou, e Nan Zhang. "Microstructure". In CIRP Encyclopedia of Production Engineering, 1197–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-53120-4_16727.
Texto completo da fonteGooch, Jan W. "Microstructure". In Encyclopedic Dictionary of Polymers, 462. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_7489.
Texto completo da fonteGottstein, Günter. "Microstructure". In Physical Foundations of Materials Science, 5–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09291-0_2.
Texto completo da fonteHernando, Isabel, Empar Llorca e Amparo Quiles. "Microstructure". In Handbook of Dairy Foods Analysis, 323–38. 2a ed. Second edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9780429342967-16.
Texto completo da fonteRebohle, Lars, e Wolfgang Skorupa. "Microstructure". In Rare-Earth Implanted MOS Devices for Silicon Photonics, 5–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14447-9_2.
Texto completo da fonteHernando, Isabel, Empar Llorca e Amparo Quiles. "Microstructure". In Handbook of Seafood and Seafood Products Analysis, 169–89. 2a ed. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003289401-11.
Texto completo da fonteBennett, Richard H., e Matthew H. Hulbert. "Introduction". In Clay Microstructure, 1–3. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4684-2_1.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Microstructure"
Shields, Mitchell H., John G. Speer, Kip O. Findley e Fares Haddad. "Effects of Thermal Processing History on Microstructure and Local Hardness in a Bainitic TRIP Steel". In IFHTSE 2024, 193–200. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.ifhtse2024p0193.
Texto completo da fonteXu, Hongyi, Ruoqian Liu, Alok Choudhary e Wei Chen. "A Machine Learning-Based Design Representation Method for Designing Heterogeneous Microstructures". In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34570.
Texto completo da fonteJonsson, Katherine, Douglas G. Ivey, Hani Henein, Shahrooz Nafisi, Laurie Collins, Thomas Garcin e Warren Poole. "The Effect of Microstructure on Tensile Behaviour of X80 Microalloyed Steel". In 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90685.
Texto completo da fonteRangarajan, Aswath, e Veera Sundararaghavan. "Design of Microstructure Response Using a Complex Step Plasticity Approach". In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39011.
Texto completo da fonteXu, Leidong, Kiarash Naghavi Khanghah e Hongyi Xu. "Design of Mixed-Category Stochastic Microstructures: A Comparison of Curvature Functional-Based and Deep Generative Model-Based Methods". In ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/detc2023-114601.
Texto completo da fonteLi, Xiaolin, Zijiang Yang, L. Catherine Brinson, Alok Choudhary, Ankit Agrawal e Wei Chen. "A Deep Adversarial Learning Methodology for Designing Microstructural Material Systems". In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85633.
Texto completo da fonteXu, Hongyi, Yang Li, Catherine Brinson e Wei Chen. "Descriptor-Based Methodology for Designing Heterogeneous Microstructural Materials System". In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12232.
Texto completo da fonteIsobe, Yoshihiro, Junji Etoh, Mitsuyuki Sagisaka, Takashi Matsunaga, Paula Freyer, Frank Garner e Taira Okita. "Ultrasonic NDE for Irradiation-Induced Material Degradations". In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-16850.
Texto completo da fonteZhao, Xinyu, Ashif Iquebal, Huifeng Sun e Hao Yan. "Simultaneous Material Microstructure Classification and Discovery via Hidden Markov Modeling of Acoustic Emission Signals". In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8454.
Texto completo da fonteWu, Yulun, e Yumeng Li. "How to Encode Microstructure in Machine Learning: A Comparison Study". In ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/detc2023-116704.
Texto completo da fonteRelatórios de organizações sobre o assunto "Microstructure"
Carroll, Jay, Kaitlynn Fitzgerald, Hojun Lim, Nicole Aragon, Timothy Ruggles, William Gilliland e Douglas Medlin. Microstructure Clones. Office of Scientific and Technical Information (OSTI), setembro de 2024. http://dx.doi.org/10.2172/2462914.
Texto completo da fonteMoore, A. S., C. A. Thomas e T. M. Reese. Microstructure Filled Hohlraums. Office of Scientific and Technical Information (OSTI), fevereiro de 2017. http://dx.doi.org/10.2172/1345335.
Texto completo da fonteSchroers, Jan, e Jittisa Ketkaew. Using Artificial Microstructures to Understand Microstructure Property Relationship-Toughening Mechanisms in Metallic Glass. Office of Scientific and Technical Information (OSTI), julho de 2023. http://dx.doi.org/10.2172/1989817.
Texto completo da fonteGregg, Michael C., e Jack B. Miller. Modular Microstructure Profiler (MMP). Fort Belvoir, VA: Defense Technical Information Center, setembro de 2007. http://dx.doi.org/10.21236/ada605602.
Texto completo da fonteOlson, Gregory B. Dynamic Microstructure Design Consortium. Fort Belvoir, VA: Defense Technical Information Center, março de 2011. http://dx.doi.org/10.21236/ada544619.
Texto completo da fonteAsenath-Smith, Emily, Ross Lieblappen, Susan Taylor, Reed Winter, Terry Melendy, Robert Moser e Robert Haehnel. Observation of crack arrest in ice by high aspect ratio particles during uniaxial compression. Engineer Research and Development Center (U.S.), fevereiro de 2022. http://dx.doi.org/10.21079/11681/43145.
Texto completo da fonteDaniel. L52353 Materials Selection, Welding and Weld Monitoring - Optimized Welding Solutions for X100 Line Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), abril de 2012. http://dx.doi.org/10.55274/r0010650.
Texto completo da fonteTwesten, R. D., J. M. Millunchick, S. R. Lee, D. M. Follstaedt, E. D. Jones, S. P. Ahrenkiel, Y. Zhang e A. Mascarenhas. Microstructure of compositionally modulated InAlAs. Office of Scientific and Technical Information (OSTI), dezembro de 1996. http://dx.doi.org/10.2172/453541.
Texto completo da fonteCaturla, M. Microstructure evolution in irradiated materials. Office of Scientific and Technical Information (OSTI), novembro de 1999. http://dx.doi.org/10.2172/15002353.
Texto completo da fonteLawn, Brian R., Peter L. Swanson, Carolyn J. Fairbanks, Bernard J. Hockey e Yiu-Wing Mai. Strength and Microstructure of Ceramics. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1987. http://dx.doi.org/10.21236/ada190712.
Texto completo da fonte