Artigos de revistas sobre o tema "Microhomology mediated recombination"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Microhomology mediated recombination".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Jiang, Yuning. "Contribution of Microhomology to Genome Instability: Connection between DNA Repair and Replication Stress". International Journal of Molecular Sciences 23, n.º 21 (26 de outubro de 2022): 12937. http://dx.doi.org/10.3390/ijms232112937.
Texto completo da fonteXu, Yijiang, Hang Zhou, Ginell Post, Hong Zan e Paolo Casali. "Rad52 mediates class-switch DNA recombination to IgD". Journal of Immunology 208, n.º 1_Supplement (1 de maio de 2022): 112.17. http://dx.doi.org/10.4049/jimmunol.208.supp.112.17.
Texto completo da fonteLee-Theilen, Mieun, Allysia J. Matthews, Dierdre Kelly, Simin Zheng e Jayanta Chaudhuri. "CtIP promotes microhomology-mediated alternative end joining during class-switch recombination". Nature Structural & Molecular Biology 18, n.º 1 (5 de dezembro de 2010): 75–79. http://dx.doi.org/10.1038/nsmb.1942.
Texto completo da fonteFrancis, Nigel J., Bairbre McNicholas, Atif Awan, Mary Waldron, Donal Reddan, Denise Sadlier, David Kavanagh et al. "A novel hybrid CFH/CFHR3 gene generated by a microhomology-mediated deletion in familial atypical hemolytic uremic syndrome". Blood 119, n.º 2 (12 de janeiro de 2012): 591–601. http://dx.doi.org/10.1182/blood-2011-03-339903.
Texto completo da fonteAhrabi, Sara, Sovan Sarkar, Sophia X. Pfister, Giacomo Pirovano, Geoff S. Higgins, Andrew C. G. Porter e Timothy C. Humphrey. "A role for human homologous recombination factors in suppressing microhomology-mediated end joining". Nucleic Acids Research 44, n.º 12 (29 de abril de 2016): 5743–57. http://dx.doi.org/10.1093/nar/gkw326.
Texto completo da fonteChan, C. Y., M. Kiechle, P. Manivasakam e R. H. Schiestl. "Ionizing radiation and restriction enzymes induce microhomology-mediated illegitimate recombination in Saccharomyces cerevisiae". Nucleic Acids Research 35, n.º 15 (11 de julho de 2007): 5051–59. http://dx.doi.org/10.1093/nar/gkm442.
Texto completo da fonteLing, Alexanda K., Clare C. So, Michael X. Le, Audrey Y. Chen, Lisa Hung e Alberto Martin. "Double-stranded DNA break polarity skews repair pathway choice during intrachromosomal and interchromosomal recombination". Proceedings of the National Academy of Sciences 115, n.º 11 (22 de fevereiro de 2018): 2800–2805. http://dx.doi.org/10.1073/pnas.1720962115.
Texto completo da fonteChan, Cecilia Y., e Robert H. Schiestl. "Rad1, rad10 and rad52 Mutations Reduce the Increase of Microhomology Length during Radiation-Induced Microhomology-Mediated Illegitimate Recombination in Saccharomyces cerevisiae". Radiation Research 172, n.º 2 (1 de agosto de 2009): 141. http://dx.doi.org/10.1667/rr1675.1.
Texto completo da fonteNagai, Koki, Hirohito Shima, Miki Kamimura, Junko Kanno, Erina Suzuki, Akira Ishiguro, Satoshi Narumi, Shigeo Kure, Ikuma Fujiwara e Maki Fukami. "Xp22.31 Microdeletion due to Microhomology-Mediated Break-Induced Replication in a Boy with Contiguous Gene Deletion Syndrome". Cytogenetic and Genome Research 151, n.º 1 (2017): 1–4. http://dx.doi.org/10.1159/000458469.
Texto completo da fonteMeyer, Damon, Becky Xu Hua Fu e Wolf-Dietrich Heyer. "DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae". Proceedings of the National Academy of Sciences 112, n.º 50 (25 de novembro de 2015): E6907—E6916. http://dx.doi.org/10.1073/pnas.1507833112.
Texto completo da fonteXu, Ran, Ziyi Pan e Takuro Nakagawa. "Gross Chromosomal Rearrangement at Centromeres". Biomolecules 14, n.º 1 (24 de dezembro de 2023): 28. http://dx.doi.org/10.3390/biom14010028.
Texto completo da fonteRobert, Isabelle, Françoise Dantzer e Bernardo Reina-San-Martin. "Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination". Journal of Experimental Medicine 206, n.º 5 (13 de abril de 2009): 1047–56. http://dx.doi.org/10.1084/jem.20082468.
Texto completo da fonteWang, Xiaobin S., Junfei Zhao, Foon Wu-Baer, Zhengping Shao, Brian J. Lee, Olivia M. Cupo, Raul Rabadan, Jean Gautier, Richard Baer e Shan Zha. "CtIP-mediated DNA resection is dispensable for IgH class switch recombination by alternative end-joining". Proceedings of the National Academy of Sciences 117, n.º 41 (28 de setembro de 2020): 25700–25711. http://dx.doi.org/10.1073/pnas.2010972117.
Texto completo da fonteChen, Changming, Xiaoling Xie, Xi Wu, Yeling Lu, Xuefeng Wang, Wenman Wu, Yiqun Hu e Qiulan Ding. "Complex recombination with deletion in the F8 and duplication in the TMLHE mediated by int22h copies during early embryogenesis". Thrombosis and Haemostasis 117, n.º 08 (2017): 1478–85. http://dx.doi.org/10.1160/th17-01-0046.
Texto completo da fonteSaribasak, Huseyin, Robert W. Maul, Zheng Cao, Rhonda L. McClure, William Yang, Daniel R. McNeill, David M. Wilson e Patricia J. Gearhart. "XRCC1 suppresses somatic hypermutation and promotes alternative nonhomologous end joining in Igh genes". Journal of Experimental Medicine 208, n.º 11 (3 de outubro de 2011): 2209–16. http://dx.doi.org/10.1084/jem.20111135.
Texto completo da fonteEhrenstein, M. R., C. Rada, A. M. Jones, C. Milstein e M. S. Neuberger. "Switch junction sequences in PMS2-deficient mice reveal a microhomology-mediated mechanism of Ig class switch recombination". Proceedings of the National Academy of Sciences 98, n.º 25 (20 de novembro de 2001): 14553–58. http://dx.doi.org/10.1073/pnas.241525998.
Texto completo da fonteChen, Xiaojiang S., e Richard T. Pomerantz. "DNA Polymerase θ: A Cancer Drug Target with Reverse Transcriptase Activity". Genes 12, n.º 8 (27 de julho de 2021): 1146. http://dx.doi.org/10.3390/genes12081146.
Texto completo da fonteBothmer, Anne, Davide F. Robbiani, Niklas Feldhahn, Anna Gazumyan, Andre Nussenzweig e Michel C. Nussenzweig. "53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination". Journal of Experimental Medicine 207, n.º 4 (5 de abril de 2010): 855–65. http://dx.doi.org/10.1084/jem.20100244.
Texto completo da fonteDecottignies, Anabelle. "Microhomology-Mediated End Joining in Fission Yeast Is Repressed by Pku70 and Relies on Genes Involved in Homologous Recombination". Genetics 176, n.º 3 (4 de maio de 2007): 1403–15. http://dx.doi.org/10.1534/genetics.107.071621.
Texto completo da fonteDing, Qiulan, Guoling You, Jing Dai, Xiaodong Xi, Hongli Wang, Xi Wu, Yeling Lu e Xuefeng Wang. "Characterisation of large F9 deletions in seven unrelated patients with severe haemophilia B". Thrombosis and Haemostasis 112, n.º 09 (2014): 459–65. http://dx.doi.org/10.1160/th13-12-1060.
Texto completo da fonteYou, Guoling, Kun Chi, Yeling Lu, Qiulan Ding, Jing Dai, Xiaodong Xi, Hongli Wang e Xuefeng Wang. "Identification and characterisation of a novel aberrant pattern of intron 1 inversion with concomitant large insertion and deletion within the F8 gene". Thrombosis and Haemostasis 112, n.º 08 (2014): 264–70. http://dx.doi.org/10.1160/th13-10-0892.
Texto completo da fonteKohli, Ajay, Simon Griffiths, Natalia Palacios, Richard M Twyman, Philippe Vain, David A. Laurie e Paul Christou. "Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination". Plant Journal 17, n.º 6 (março de 1999): 591–601. http://dx.doi.org/10.1046/j.1365-313x.1999.00399.x.
Texto completo da fonteFiori, Mariangela Stefania, Luca Ferretti, Antonello Di Nardo, Lele Zhao, Susanna Zinellu, Pier Paolo Angioi, Matteo Floris et al. "A Naturally Occurring Microhomology-Mediated Deletion of Three Genes in African Swine Fever Virus Isolated from Two Sardinian Wild Boars". Viruses 14, n.º 11 (14 de novembro de 2022): 2524. http://dx.doi.org/10.3390/v14112524.
Texto completo da fonteFeng, Wanjuan, Dennis A. Simpson, Jang-Eun Cho, Juan Carvajal-Garcia, Chelsea M. Smith, Kathryn M. Headley, Nate Hathaway, Dale A. Ramsden e Gaorav P. Gupta. "Marker-free quantification of repair pathway utilization at Cas9-induced double-strand breaks". Nucleic Acids Research 49, n.º 9 (8 de maio de 2021): 5095–105. http://dx.doi.org/10.1093/nar/gkab299.
Texto completo da fonteStachler, Aris-Edda, Julia Wörtz, Omer S. Alkhnbashi, Israela Turgeman-Grott, Rachel Smith, Thorsten Allers, Rolf Backofen, Uri Gophna e Anita Marchfelder. "Adaptation induced by self-targeting in a type I-B CRISPR-Cas system". Journal of Biological Chemistry 295, n.º 39 (28 de julho de 2020): 13502–15. http://dx.doi.org/10.1074/jbc.ra120.014030.
Texto completo da fonteDahal, Sumedha, e Sathees C. Raghavan. "Mitochondrial genome stability in human: understanding the role of DNA repair pathways". Biochemical Journal 478, n.º 6 (19 de março de 2021): 1179–97. http://dx.doi.org/10.1042/bcj20200920.
Texto completo da fonteWang, Wenjie, Kuan Li, Zhuo Yang, Quancan Hou, Wei W. Zhao e Qianwen Sun. "RNase H1C collaborates with ssDNA binding proteins WHY1/3 and recombinase RecA1 to fulfill the DNA damage repair in Arabidopsis chloroplasts". Nucleic Acids Research 49, n.º 12 (16 de junho de 2021): 6771–87. http://dx.doi.org/10.1093/nar/gkab479.
Texto completo da fonteÖz, Robin, Sean M. Howard, Rajhans Sharma, Hanna Törnkvist, Ilaria Ceppi, Sriram KK, Erik Kristiansson, Petr Cejka e Fredrik Westerlund. "Phosphorylated CtIP bridges DNA to promote annealing of broken ends". Proceedings of the National Academy of Sciences 117, n.º 35 (19 de agosto de 2020): 21403–12. http://dx.doi.org/10.1073/pnas.2008645117.
Texto completo da fonteZhao, Yuqin, Kaiping Hou, Yu Liu, Yinan Na, Chao Li, Haoyuan Luo e Hailong Wang. "Helicase HELQ: Molecular Characters Fit for DSB Repair Function". International Journal of Molecular Sciences 25, n.º 16 (8 de agosto de 2024): 8634. http://dx.doi.org/10.3390/ijms25168634.
Texto completo da fonteDohrn, Lisa, Daniela Salles, Simone Y. Siehler, Julia Kaufmann e Lisa Wiesmüller. "BRCA1-mediated repression of mutagenic end-joining of DNA double-strand breaks requires complex formation with BACH1". Biochemical Journal 441, n.º 3 (16 de janeiro de 2012): 919–28. http://dx.doi.org/10.1042/bj20110314.
Texto completo da fonteTruong, L. N., Y. Li, L. Z. Shi, P. Y. H. Hwang, J. He, H. Wang, N. Razavian, M. W. Berns e X. Wu. "Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells". Proceedings of the National Academy of Sciences 110, n.º 19 (22 de abril de 2013): 7720–25. http://dx.doi.org/10.1073/pnas.1213431110.
Texto completo da fonteElert-Dobkowska, Ewelina, Iwona Stepniak, Wiktoria Radziwonik-Fraczyk, Amir Jahic, Christian Beetz e Anna Sulek. "SPAST Intragenic CNVs Lead to Hereditary Spastic Paraplegia via a Haploinsufficiency Mechanism". International Journal of Molecular Sciences 25, n.º 9 (3 de maio de 2024): 5008. http://dx.doi.org/10.3390/ijms25095008.
Texto completo da fonteTomasini, Paula Pellenz, Temenouga Nikolova Guecheva, Natalia Motta Leguisamo, Sarah Péricart, Anne-Cécile Brunac, Jean Sébastien Hoffmann e Jenifer Saffi. "Analyzing the Opportunities to Target DNA Double-Strand Breaks Repair and Replicative Stress Responses to Improve Therapeutic Index of Colorectal Cancer". Cancers 13, n.º 13 (23 de junho de 2021): 3130. http://dx.doi.org/10.3390/cancers13133130.
Texto completo da fonteLi, Zhichao, e Ralph Bock. "Rapid functional activation of a horizontally transferred eukaryotic gene in a bacterial genome in the absence of selection". Nucleic Acids Research 47, n.º 12 (20 de maio de 2019): 6351–59. http://dx.doi.org/10.1093/nar/gkz370.
Texto completo da fonteLukashchuk, Natalia, Joshua Armenia, Luis Tobalina, Thomas Hedley Carr, Tsveta Milenkova, Ying L. Liu, Richard T. Penson, Mark E. Robson e Elizabeth Harrington. "BRCA reversion mutations mediated by microhomology-mediated end joining (MMEJ) as a mechanism of resistance to PARP inhibitors in ovarian and breast cancer." Journal of Clinical Oncology 40, n.º 16_suppl (1 de junho de 2022): 5559. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.5559.
Texto completo da fonteLukashchuk, Natalia, Joshua Armenia, Luis Tobalina, Thomas Hedley Carr, Tsveta Milenkova, Ying L. Liu, Richard T. Penson, Mark E. Robson e Elizabeth Harrington. "BRCA reversion mutations mediated by microhomology-mediated end joining (MMEJ) as a mechanism of resistance to PARP inhibitors in ovarian and breast cancer." Journal of Clinical Oncology 40, n.º 16_suppl (1 de junho de 2022): 5559. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.5559.
Texto completo da fonteHays, Michelle, Katja Schwartz, Danica T. Schmidtke, Dimitra Aggeli e Gavin Sherlock. "Paths to adaptation under fluctuating nitrogen starvation: The spectrum of adaptive mutations in Saccharomyces cerevisiae is shaped by retrotransposons and microhomology-mediated recombination". PLOS Genetics 19, n.º 5 (16 de maio de 2023): e1010747. http://dx.doi.org/10.1371/journal.pgen.1010747.
Texto completo da fonteProvasek, Vincent E., Joy Mitra, Vikas H. Malojirao e Muralidhar L. Hegde. "DNA Double-Strand Breaks as Pathogenic Lesions in Neurological Disorders". International Journal of Molecular Sciences 23, n.º 9 (22 de abril de 2022): 4653. http://dx.doi.org/10.3390/ijms23094653.
Texto completo da fonteZhao, Zhihua, Hanshuo Zhang, Tuanlin Xiong, Junyi Wang, Di Yang, Dan Zhu, Juan Li et al. "Suppression of SHROOM1 Improves In Vitro and In Vivo Gene Integration by Promoting Homology-Directed Repair". International Journal of Molecular Sciences 21, n.º 16 (13 de agosto de 2020): 5821. http://dx.doi.org/10.3390/ijms21165821.
Texto completo da fonteLiu, Yu-Chang, Chih-Hao Huang e Ching-Chun Chang. "A Transcriptomic Analysis of Tobacco Leaf with the Functional Loss of the Plastid rpoB Operon Caused by TALEN-Mediated Double-Strand Breakage". Plants 11, n.º 21 (26 de outubro de 2022): 2860. http://dx.doi.org/10.3390/plants11212860.
Texto completo da fonteAnand, Roopesh, Erika Buechelmaier, Ondrej Belan, Matthew Newton, Aleksandra Vancevska, Artur Kaczmarczyk, Tohru Takaki, David S. Rueda, Simon N. Powell e Simon J. Boulton. "HELQ is a dual-function DSB repair enzyme modulated by RPA and RAD51". Nature 601, n.º 7892 (22 de dezembro de 2021): 268–73. http://dx.doi.org/10.1038/s41586-021-04261-0.
Texto completo da fonteAlexander, Jessica L., Kelly Beagan, Terry L. Orr-Weaver e Mitch McVey. "Multiple mechanisms contribute to double-strand break repair at rereplication forks inDrosophilafollicle cells". Proceedings of the National Academy of Sciences 113, n.º 48 (14 de novembro de 2016): 13809–14. http://dx.doi.org/10.1073/pnas.1617110113.
Texto completo da fonteTsuji, Hideo, Hiroko Ishii-Ohba, Takanori Katsube, Hideki Ukai, Shiro Aizawa, Masahiro Doi, Kyoji Hioki e Toshiaki Ogiu. "Involvement of Illegitimate V(D)J Recombination or Microhomology-Mediated Nonhomologous End-Joining in the Formation of Intragenic Deletions of the Notch1 Gene in Mouse Thymic Lymphomas". Cancer Research 64, n.º 24 (15 de dezembro de 2004): 8882–90. http://dx.doi.org/10.1158/0008-5472.can-03-1163.
Texto completo da fonteHaberland, Vivien M. M., Simon Magin, George Iliakis e Andrea Hartwig. "Impact of Manganese and Chromate on Specific DNA Double-Strand Break Repair Pathways". International Journal of Molecular Sciences 24, n.º 12 (20 de junho de 2023): 10392. http://dx.doi.org/10.3390/ijms241210392.
Texto completo da fonteJiang, Yuning, e Tarek Abbas. "Abstract 6107: Novel roles for AMBRA1 in regulating DNA double-strand breaks". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 6107. http://dx.doi.org/10.1158/1538-7445.am2023-6107.
Texto completo da fonteYan, Dan, Yao Zhang, Yan Zhang, Jingxi Zhang, Bin Wang, Huixian Chen, Jingxue Shi, Xiaoling Lin, Jincong Zhuo e Kevin Zhou. "Abstract 4532: Discovery of DAT-1000A, a potent Polθ inhibitor that significantly enhances anti-tumor efficacy in combination with PARP inhibitor in homologous-recombination-deficient tumors". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 4532. http://dx.doi.org/10.1158/1538-7445.am2024-4532.
Texto completo da fontePatterson-Fortin, Jeffrey, Heta Jadhav, Constantia Pantelidou, Tin Phan, Carter Grochala, Anita K. Mehta, Jennifer L. Guerriero et al. "Abstract 6190: Polymerase theta inhibition activates the cGAS-STING pathway and cooperates with immune checkpoint blockade in BRCA-deficient cancers". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 6190. http://dx.doi.org/10.1158/1538-7445.am2023-6190.
Texto completo da fonteLe, Bac Viet, Umeshkumar Vekariya, Monika Toma, Margaret Nieborowska-Skorska, Marie-Christine Caron, George Vassiliou, Malgorzata Gozdecka et al. "Inactivation of DNA Polymerase Theta (PolΘ) Is Synthetic Lethal in DNMT3A Mutated Myeloid Malignancies - Potential Clinical Applications". Blood 142, Supplement 1 (28 de novembro de 2023): 580. http://dx.doi.org/10.1182/blood-2023-174333.
Texto completo da fonteSamnotra, Vivek, Veronica Moroz, Luda Shtessel, Mita Kuchimanchi, Patrick Hanafin, Malar Pannirselvam, Aishwarya Bhaskar et al. "First-in-human, phase 1/2 study of GSK4524101, an oral DNApolymerase theta inhibitor (POLQi), alone or combined with the poly(ADP-ribose) polymerase (PARP) inhibitor (PARPi) niraparib in adults with solid tumors." Journal of Clinical Oncology 42, n.º 16_suppl (1 de junho de 2024): TPS3174. http://dx.doi.org/10.1200/jco.2024.42.16_suppl.tps3174.
Texto completo da fonteToma, Monika, Margaret Nieborowska-Skorska, Adam Karami, Monika Pepek, Tomasz Stoklosa e Tomasz Skorski. "Clonal Targeting of DNA Damage Response Pathways Eradicates Myeloproliferative Neoplasms". Blood 142, Supplement 1 (28 de novembro de 2023): 120. http://dx.doi.org/10.1182/blood-2023-174280.
Texto completo da fonte