Literatura científica selecionada sobre o tema "Microencapsulation"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Microencapsulation".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Microencapsulation"

1

Perez-Palacios, Trinidad, Jorge Ruiz-Carrascal, Juan Carlos Solomando, Francisco de-la-Haba, Abraham Pajuelo e Teresa Antequera. "Recent Developments in the Microencapsulation of Fish Oil and Natural Extracts: Procedure, Quality Evaluation and Food Enrichment". Foods 11, n.º 20 (20 de outubro de 2022): 3291. http://dx.doi.org/10.3390/foods11203291.

Texto completo da fonte
Resumo:
Due to the beneficial health effects of omega-3 fatty acids and antioxidants and their limited stability in response to environmental and processing factors, there is an increasing interest in microencapsulating them to improve their stability. However, despite recent developments in the field, no specific review focusing on these topics has been published in the last few years. This work aimed to review the most recent developments in the microencapsulation of fish oil and natural antioxidant compounds. The impact of the wall material and the procedures on the quality of the microencapsulates were preferably evaluated, while their addition to foods has only been studied in a few works. The homogenization technique, the wall–material ratio and the microencapsulation technique were also extensively studied. Microcapsules were mainly analyzed for size, microencapsulation efficiency, morphology and moisture, while in vitro digestion, flowing properties, yield percentage and Fourier transform infrared spectroscopy (FTIR) were used more sparingly. Findings highlighted the importance of optimizing the most influential variables of the microencapsulation procedure. Further studies should focus on extending the range of analytical techniques upon which the optimization of microcapsules is based and on addressing the consequences of the addition of microcapsules to food products.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Onah, I. A., K. C. Ofokansi, D. C. Odimegwu e E. B. Onuigbo. "Efficiency of Polymer-silica Blends in the Microencapsulation of Yellow Fever Virus Vaccine". Science View Journal 4, n.º 2 (30 de setembro de 2023): 318–25. http://dx.doi.org/10.55989/klya6292.

Texto completo da fonte
Resumo:
The currently available yellow fever vaccines are thermally unstable and involve huge costs during preservation and administration. Microencapsulation with thermally stable coating materials is considered as a means of protecting yellow fever vaccines from thermal degradation. Silica nanoparticles have thermal stabilizing abilities but do not possess film forming properties. It is proposed that polymer-silica blends might be a good coating material for microencapsulation. This study is aimed at investigating the compatibility and efficiency of blends of selected polymers with silicon obtained from rice husk ash (RHA) in microencapsulating yellow fever virus vaccine. The encapsulated yellow fever vaccine was characterised by FTIR and SEM-EDX spectroscopy, and the vaccine encapsulation efficiency was determined. FTIR spectra of the individual components and final encapsulated vaccine showed good chemical compatibility of all the ingredients. SEM studies of the products revealed uneven and rough surfaces with shrinkages. The vaccine encapsulation efficiency was 66.7%. Altogether, these results suggest that polymer-RHA silica blend can be used in microencapsulating yellow fever virus vaccine.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Litwin, Allen, Michael Flanagan e J. Gabriel Michael. "Microencapsulation". BioDrugs 9, n.º 4 (1998): 261–70. http://dx.doi.org/10.2165/00063030-199809040-00001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Gouin, Sébastien. "Microencapsulation". Trends in Food Science & Technology 15, n.º 7-8 (julho de 2004): 330–47. http://dx.doi.org/10.1016/j.tifs.2003.10.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hardi, Jaya, Dian Citra, Syamsuddin e Dwi Juli Pusptasari. "Efisiensi Mikroenkapsulasi Ekstrak Kulit Buah Naga Super Merah (Hylocereus costaricensis) Tersalut Maltodekstrin Berdasarkan Kecepatan Pengadukan". KOVALEN: Jurnal Riset Kimia 6, n.º 1 (18 de abril de 2020): 1–8. http://dx.doi.org/10.22487/kovalen.2020.v6.i1.12647.

Texto completo da fonte
Resumo:
Extract of super red dragon fruit peel has an antioxidant activity that can prevent free radicals from outside and its activity can be maintained by the coating of super red dragon fruit peel extract with maltodextrin The coating efficiency of super red dragon fruit peel extract with maltodextrin can be controlled with the speed of stirring during microencapsulation experiment. In order to obtain the highest microencapsulation efficiency and compare the antioxidant activity of super red dragon fruit peel extract before and after microencapsulation experiment. The study of coating efficiency has been done with microencapsulation that was carried out using the freeze-drying technique. During the microencapsulation of super red dragon fruit peel extract with freeze-drying technique, stirring speed in the microencapsulation process was 600 rpm, 800 rpm, 1000 rpm, 1200 rpm, and 1400 rpm respectively. From the microencapsulation process of super red dragon fruit peel extract coated with maltodextrin, it was obtained the highest microencapsulation efficiency at stirring speed of 800 rpm, which was 66.85% and had a particle size of 14.24 µm. It can be concluded that the antioxidant activity before and after encapsulation included a very weak category with IC50 values of 205.42 ppm for extracts and 246.32 ppm for microcapsules. Keywords: Super red dragon fruit peel, freeze-drying, microencapsulation, maltodextrin
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Taunton-Rigby, Alison. "Microencapsulation Clarification". Nature Biotechnology 4, n.º 5 (maio de 1986): 462. http://dx.doi.org/10.1038/nbt0586-462a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Rosenberg, Moshe, Yael Rosenberg e Jing Zhang. "Microencapsulation of a Model Oil in Wall System Consisting of Wheat Proteins Isolate (WHPI) and Lactose". Applied Sciences 8, n.º 10 (16 de outubro de 2018): 1944. http://dx.doi.org/10.3390/app8101944.

Texto completo da fonte
Resumo:
Microencapsulation allows for the entrapment, protection, and delivery of sensitive and/or active desired nutrients and ingredients as well as biologically-active agents. The microencapsulating properties of wall solutions (WS) containing 2.5–10% (w/w) wheat proteins isolate (WHPI) and 17.5–10% (w/w) lactose were investigated. Core-in-wall-emulsions (CIWEs) consisting of the WS and soy oil were prepared at a wall-to-core (W:C) ratio ranging from 25:75 to 75:25 (w/w). Microcapsules were prepared by spray-drying the CIWEs. The CIWEs had a mean particle diameter smaller than 0.5 µm and surface excess that ranged from 1.59 to 5.32 mg/m2. In all cases, microcapsules with smooth outer surfaces that exhibited only limited surface indentation were obtained. The core, in the form of protein-coated lipid droplets, was embedded throughout the wall matrices. In all but one case, core retention was higher than 83%, and in 50% of the cases, it was higher than 90%. Core retention was significantly influenced the composition of the WS and by W:C ratio (p < 0.05). Except for two cases, microcapsules exhibited very limited core extractability. The microencapsulation efficiency was >90% and was influenced, to a certain degree, by the composition of the CIWEs. Results indicated the potential for utilizing wall systems consisting of WHPI and lactose as effective and highly functional microencapsulating agents in food and related applications.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Tomaro-Duchesneau, Catherine, Shyamali Saha, Meenakshi Malhotra, Imen Kahouli e Satya Prakash. "Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions". Journal of Pharmaceutics 2013 (5 de dezembro de 2013): 1–19. http://dx.doi.org/10.1155/2013/103527.

Texto completo da fonte
Resumo:
Microencapsulation is a technology that has shown significant promise in biotherapeutics, and other applications. It has been proven useful in the immobilization of drugs, live mammalian and bacterial cells and other cells, and other biopharmaceutics molecules, as it can provide material structuration, protection of the enclosed product, and controlled release of the encapsulated contents, all of which can ensure efficient and safe therapeutic effects. This paper is a comprehensive review of microencapsulation and its latest developments in the field. It provides a comprehensive overview of the technology and primary goals of microencapsulation and discusses various processes and techniques involved in microencapsulation including physical, chemical, physicochemical, and other methods involved. It also summarizes the state-of-the-art successes of microencapsulation, specifically with regard to the encapsulation of microorganisms, mammalian cells, drugs, and other biopharmaceutics in various diseases. The limitations and future directions of microencapsulation technologies are also discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Mulyadi, Naomi M., Tri D. Widyaningsih, Novita Wijayanti, Renny Indrawati, Heriyanto Heriyanto e Leenawaty Limantara. "Microencapsulation of Kabocha Pumpkin Carotenoids". International Journal of Chemical Engineering and Applications 8, n.º 6 (dezembro de 2017): 381–86. http://dx.doi.org/10.18178/ijcea.2017.8.6.688.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Mohd Yusop, Fatin Hafizah, Shareena Fairuz Abd Manaf e Fazlena Hamzah. "Preservation of Bioactive Compound via Microencapsulation". Chemical Engineering Research Bulletin 19 (10 de setembro de 2017): 50. http://dx.doi.org/10.3329/cerb.v19i0.33796.

Texto completo da fonte
Resumo:
<p>The aim of this paper is to discuss on the preservation of bioactive compound by using microencapsulation techniques. Microencapsulation is a process of building a functional barrier between the core and wall material to prevent any chemical or physical reactions. Microencapsulation provides an important technique in various food, pharmaceutical industry and textile product because has the ability to improve shelf-life, oxidative stability, provide protection and controlled biological activity release of active agents. Microencapsulation of plant extract, essential oils, vegetable has been developed and commercialized by employing various method including freeze drying, coacervation, spray drying, in situ polymerization and melt-extrusion. The most commonly used techniques for microencapsulation of oils are by using spray drying and coacervation method. Microencapsulation methods have been developed in order to modify the efficiency based on several factors such as types of active agents, shell material used, generating particles with a variable range of sizes, shell thickness and permeability. With this work, an overview regarding efficient and applications of microencapsulation process will be presented.</p><p>Chemical Engineering Research Bulletin 19(2017) 50-56</p>
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Microencapsulation"

1

Caserta, Laura. "Microencapsulation pour l'autoréparation". Thesis, Aix-Marseille 3, 2011. http://www.theses.fr/2011AIX30037.

Texto completo da fonte
Resumo:
Un matériau qui se répare tout seul. Une fissure ou une rayure qui se rebouche elle-même après un impact, comme une blessure pour un être vivant. Le concept d’autoréparation ainsi décrit n’est plus une idée purement fantaisiste issue de l’imagination fertile des chercheurs. De récents travaux prouvent le contraire. Catalyse a choisi de mettre au point un processus d’autoréparation par l’intégration de microparticules contenant un principe actif liquide, libéré lors son l’éclatement. Ce liquide, un monomère, va alors polymériser, rebouchant ainsi la fissure et empêchant sa propagation.L’innovation de Catalyse a été d’imaginer une formulation autoréparante capable de polymériser directement au contact du milieu extérieur. Les éléments alors mis à disposition par l’environnement peuvent être la lumière (rayonnements UV ou visibles), l’oxygène, ou l’humidité. Les monomères envisagés pour l’encapsulation sont alors respectivement un acrylate, TMPTA, ou une époxy (mélangés avec un photoamorceur adapté), l’huile de lin (siccative) et un isocyanate trimère de l’hexamétylène diisocyanate. L’encapsulation des ces quatre composés est étudiée en parallèle et les travaux réalisés sont explicités dans les chapitres 2, 3 et 4 de ce document. Le TMPTA et l’huile de lin sont encapsulés par le procédé sol-gel, l’époxy et l’isocyanate, par polycondensation interfaciale. Les résultats obtenus sont variables d’un monomère à l’autre, mais dans l’ensemble, les résultats sont concluants et montrent d’une part, qu’il est possible d’obtenir des particules contenant un taux de principe actif intéressant et stables dans le temps, et d’autre part que suite à l’éclatement desdites capsules, le monomère polymérise, assurant ainsi le processus d’autoréparation
A material that could repair itself, a crack that can heal itself after an impact, like a wound on the body. The concept of self-healing described is not science fiction created by the crazy imagination of researchers. Recent studies show otherwise. The French company CATALYSE has developed a process of self-healing through the integration of microparticles containing an active liquid ingredient that is released during a crack in the material. The liquid monomer fills the crack, polymerizes and prevents further spread. The innovation of CATALYSE was to imagine a self-repairing formula, which polymerizes when exposed to the outside of the self-contained environment. This includes light (UV or visible rays), oxygen or humidity. The corresponding monomers to be encapsulated are respectively an acrylate (for example TMPTA), an epoxy (mixed with an adapted photoinitiator), linseed oil or diisocyanate (for example an isocyanine trimer or hexamethylene diisocyanate). The encapsulations of these four compounds were studied in parallel and the results are explained in chapters 2, 3 and 4 of this document. The TMPTA and linseed oil are both encapsulated by the sol-gel process, the epoxy and isocyanate, by interfacial polycondensation. The results vary from one monomer to another but the overall results are conclusive. They show that it is possible to obtain a high percentage of the active ingredient and that the particles stay stable over time. Following the bursting of such capsules, the monomer polymerizes and ensures the self-healing process
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Caserta, Laura. "Microencapsulation pour l'autoréparation". Electronic Thesis or Diss., Aix-Marseille 3, 2011. http://www.theses.fr/2011AIX30037.

Texto completo da fonte
Resumo:
Un matériau qui se répare tout seul. Une fissure ou une rayure qui se rebouche elle-même après un impact, comme une blessure pour un être vivant. Le concept d’autoréparation ainsi décrit n’est plus une idée purement fantaisiste issue de l’imagination fertile des chercheurs. De récents travaux prouvent le contraire. Catalyse a choisi de mettre au point un processus d’autoréparation par l’intégration de microparticules contenant un principe actif liquide, libéré lors son l’éclatement. Ce liquide, un monomère, va alors polymériser, rebouchant ainsi la fissure et empêchant sa propagation.L’innovation de Catalyse a été d’imaginer une formulation autoréparante capable de polymériser directement au contact du milieu extérieur. Les éléments alors mis à disposition par l’environnement peuvent être la lumière (rayonnements UV ou visibles), l’oxygène, ou l’humidité. Les monomères envisagés pour l’encapsulation sont alors respectivement un acrylate, TMPTA, ou une époxy (mélangés avec un photoamorceur adapté), l’huile de lin (siccative) et un isocyanate trimère de l’hexamétylène diisocyanate. L’encapsulation des ces quatre composés est étudiée en parallèle et les travaux réalisés sont explicités dans les chapitres 2, 3 et 4 de ce document. Le TMPTA et l’huile de lin sont encapsulés par le procédé sol-gel, l’époxy et l’isocyanate, par polycondensation interfaciale. Les résultats obtenus sont variables d’un monomère à l’autre, mais dans l’ensemble, les résultats sont concluants et montrent d’une part, qu’il est possible d’obtenir des particules contenant un taux de principe actif intéressant et stables dans le temps, et d’autre part que suite à l’éclatement desdites capsules, le monomère polymérise, assurant ainsi le processus d’autoréparation
A material that could repair itself, a crack that can heal itself after an impact, like a wound on the body. The concept of self-healing described is not science fiction created by the crazy imagination of researchers. Recent studies show otherwise. The French company CATALYSE has developed a process of self-healing through the integration of microparticles containing an active liquid ingredient that is released during a crack in the material. The liquid monomer fills the crack, polymerizes and prevents further spread. The innovation of CATALYSE was to imagine a self-repairing formula, which polymerizes when exposed to the outside of the self-contained environment. This includes light (UV or visible rays), oxygen or humidity. The corresponding monomers to be encapsulated are respectively an acrylate (for example TMPTA), an epoxy (mixed with an adapted photoinitiator), linseed oil or diisocyanate (for example an isocyanine trimer or hexamethylene diisocyanate). The encapsulations of these four compounds were studied in parallel and the results are explained in chapters 2, 3 and 4 of this document. The TMPTA and linseed oil are both encapsulated by the sol-gel process, the epoxy and isocyanate, by interfacial polycondensation. The results vary from one monomer to another but the overall results are conclusive. They show that it is possible to obtain a high percentage of the active ingredient and that the particles stay stable over time. Following the bursting of such capsules, the monomer polymerizes and ensures the self-healing process
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Thomas, Julie Ann. "Microencapsulation Using Inorganic Wall Materials". Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503752.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Li, Ming. "Microencapsulation par évaporation de solvant". Nantes, 2009. http://www.theses.fr/2009NANT2020.

Texto completo da fonte
Resumo:
The solvent evaporation encapsulation technique is widely used in the pharmaceutical applications for the controlled release of active principle (drug). The organic phase, which comprises solvent, polymer and active principle, is dispersed into an aqueous phase. The solvent diffuses into the latter one and then evaporates, leading consequently to the formation of solid polymer microspheres with active principle trapped inside. Contrary to most studies on the polymer choice and drug release, our study focused on the process-engineering aspects in the production of microspheres in order to optimize the process duration and analyze the influence the properties of obtained microspheres. The evaporation of solvent has been studies with different operating conditions (temperature, pressure, quantity of materials). The reduced pressure (60% of atmospheric pressure) has shown the most significant effect, which reduced the process duration to 1/3. The physical properties of the obtained microspheres (size, surface and inner structure) were examined. The investigation of the inner structure of microspheres by a novel technique X-ray tomography showed the size and location of pores. Microspheres produced under reduced pressure show smaller size, smoother surface and less porous structure. The study was then carried out at a microscopic scale on the solidification of one single drop of the dispersed phase. The mass transfer of the solvent at the interface of two phases was investigated with interferometer, which measured the variations of solvent concentration and the diffusion boundary layer with time. Our work enables to complete the knowledge of this process and propose the directions of future developments on the process
La technique d’encapsulation par évaporation de solvant est largement utilisée dans des applications pharmaceutiques pour la libération contrôlée du principe actif (médicament). La phase organique constituée de solvant, de polymère et de principe actif est dispersée dans une phase aqueuse. Le solvant diffuse dans cette dernière et puis il s'évapore, ce qui conduit à la formation des microsphères solides de polymère contenant du principe actif à l’intérieur. Contrairement à la plupart des études consacrées au choix des polymères et aux tests de libération, notre étude s’est intéressée aux aspects d'ingénierie afin d’optimiser la durée du procédé et d’analyser l'influence des conditions opératoires sur les propriétés des microsphères. L'évaporation du solvant a été étudiée pour de différentes conditions (température, pression, quantités des matériaux). La durée de procédé a été réduite à 1/3 en appliquant une faible pression (60% de la pression atmosphérique). Les propriétés des microsphères obtenues (taille, surface et structure interne) ont été examinées. L’analyse de la structure interne des microsphères par la nouvelle technique de tomographie à rayons X a montré la taille des pores et de l'emplacement des pores. L’étude a été effectuée ensuite à l’échelle microscopique sur la solidification d’une goutte de la phase dispersée. Le transfert de masse du solvant a été étudié avec l'interféromètre, permettant de mesurer la variation de concentration du solvant et l’épaisseur de la couche limite diffusive. Notre travail a permis de combler les lacunes dans la connaissance de ce procédé et il propose des pistes de développement du procédé
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Ugazio, Stéphane. "Microencapsulation d'enzymes dans les sphérulites". Bordeaux 1, 1999. http://www.theses.fr/1999BOR10574.

Texto completo da fonte
Resumo:
Les enzymes, du fait de leur specificite, de leur biodegradabilite et de leur efficacite, entrent dans de nombreux domaines d'applications. Leur encapsulation permet d'accroitre leur performance et d'etendre leur domaine d'action. En 1992 au laboratoire, un nouveau systeme d'encapsulation a ete decouvert les spherulites ou vesicules multilamellaires obtenues par le cisaillement d'une phase lamellaire de tensioactifs. Apres avoir montre que les spherulites peuvent encapsuler une enzyme efficacement, nous montrons que l'enzyme encapsulee est incapable d'agir sur un substrat place a l'exterieur des spherulites. A titre d'application nous avons encapsule une -galactosidase impliquee dans le soin de l'intolerance au lactose. Les enzymes peuvent perdre rapidement leur activite. Parmi les facteurs de denaturation on trouve l'autolyse c'est une caracteristique propre aux proteases : elles s'autodigerent. En utilisant la structure particuliere des spherulites on stoppe le phenomene en isolant une molecule enzymatique par feuillet lamellaire. Les spherulites bien qu'etant un systeme d'encapsulation efficace presentent quelques faiblesses notamment quant a l'encapsulation de molecules de petites tailles. Aussi avons-nous formule des spherulites ayant un cur aqueux mais dispersables dans l'huile. Cette dispersion peut etre ensuite mise en emulsion. La presence de la barriere huileuse permet de diminuer tous les phenomenes de diffusion comme la fuite d'un colorant et de maintenir une difference de ph entre l'interieur et l'exterieur des spherulites.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Mahmood, Arshad. "Microencapsulation strategies for islet transplantation". Thesis, Aston University, 1994. http://publications.aston.ac.uk/12597/.

Texto completo da fonte
Resumo:
A variety of islet microencapsulation techniques have been investigated to establish which method provides the least occlusive barrier to net insulin release in vitro, and optimum biocompatibility for islet implantation in vivo. NMRI mouse islets have been microencapsulated with Na+ -alginate-poly-L-lysine (PLL)/poly-L-ornithine (PLO)-alginate, Na2+ -alginate and agarose gels. Both free and microencapsulated islets responded to glucose challenge in static incubation and perifusion by significantly increasing their rate of insulin release and theophylline significantly potentiated the insulin response to glucose. While little insulin was released from microencapsulated islets after short term (2 hours) static incubation, significantly greater amounts were released in response to glucose challenge after extended (8-24 hours) incubation. However, insulin release from all types of microencapsulated islets was significantly reduced compared with free islets. Na+ -alginate-PLO-alginate microencapsulated islets were significantly more responsive to elevated glucose than Na+ -alginate-PLL-alginate microencapsulated islets, due to the enhanced porosity of PLO membranes. The outer alginate layer created a significant barrier to glucose/insulin exchange and reduced the insulin responsiveness of microencapsulated islets to glucose. Ba2+ -alginate membrane coated islets, generated by the density gradient method, were the most responsive to glucose challenge. Low concentrations of NG-monomethyl L-arginine (L-NMMA) had no significant effect on glucose stimulated insulin release from either free or microencapsulated islets. However, 1.0 mmol/1 L-NMMA significantly inhibited the insulin response of both free and microencapsulated islets to glucose challenge. In vivo work designed to evaluate the extent of pericapsular fibrosis after 28 days ip. and sc. implantation of microencapsulated islets into STZ-diabetic recipients, revealed that the inclusion of islets within microcapsules increased their immunogenicity and markedly increased the extent of pericapsular fibrosis.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Mitchell, Karen Claire. "Microencapsulation for next generation lubricants". Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/8758/.

Texto completo da fonte
Resumo:
Lubricants within an engine perform the important tasks of increasing engine efficiency and lifetime of parts, dissipating heat and decreasing fuel consumption. To help lubricating engine oils perform to the best of their ability different chemical additives are blended into the oil; the amount of additives added is dictated by the respective solubilities and the nature of any interactions between different additives. Using a technology already utilised in the pharmaceutical, food and dye industries this work presented in this thesis aims to increase the concentration of one particular additive, a friction modifier (FM), within a model oil. Monodisperse poly(methyl methacrylate) (PMMA) particles have been efficiently produced via dispersion polymerisation in a non-aqueous continuous phase and, through the incorporation of a co-solvent within the particle core, the encapsulation of FM inside these particles has been demonstrated. Work has been carried out to determine the factors which can be used to reproducibly synthesise particles to a desirable size and degree of polydispersity. The storage and release of FM from the particle core when it is required is an important consideration in the action of these particles. The rate of release from the core of particles has been studied to demonstrate the ability of these particles to act as a FM reservoir, replenishing the additive as it is consumed. An investigation of the action of particles produced, with and without FM encapsulated, on the tribological behaviour of dodecane has been carried out using a TE77 Cameron Plint tribometer. Analysis of the friction and wear results is presented here and a possible mechanism for the action of the particles in the tribological testing has also been suggested.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Mitchell, Claire Elizabeth Teall. "Microencapsulation and organocatalysis in organic synthesis". Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613750.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Abderrahmen, Robin. "Conception d'étiquettes autoadhésives par microencapsulation d'adhésif". Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENI051/document.

Texto completo da fonte
Resumo:
Le but de ce projet est de concevoir un nouveau type d'étiquette ‘écologique', n'utilisant pas de dorsale siliconé. Ainsi, la couche d'adhésif est remplacée par une couche de microcapsules d'adhésif. Ces microcapsules doivent avoir une paroi suffisamment étanche et résistante pour envelopper l'adhésif et ne pas se rompre lors des étapes de fabrication du produit. Par contre, elles doivent céder sous l'effet d'une pression et libérer l'adhésif au moment de leur utilisation. Dans un premier temps, 3 adhésifs en émulsion aqueuse ont été caractérisés en vue de leur microencapsulation. Par la suite, un adhésif a été sélectionné et encapsulé par coacervation (avec des biomatériaux comme carapace) et par polymérisation in situ aminoplaste. Ensuite, 2 autres procédés d'encapsulation d'adhésif réalisés au LAGEP (le spray-drying et le spray-cooling) ont été comparés avec les 2 techniques précédentes. Les capsules produites par spray-cooling, les plus adhésives, ont permis la formulation d'un bain d'enduction en vue d'un couchage des capsules à l'aide d'une barre de Meyer, et par procédé sérigraphique. La compatibilité de ces microcapsules avec le procédé de fabrication d'une étiquette autoadhésive classique, sur une rotative d'impression flexographique, a été montrée. Les caractéristiques finales du produit ainsi fabriqué (adhésion, pression d'application) ont été comparées avec celles de différents produits autoadhésifs industriels (étiquette, enveloppe et timbre)
The main objective of this investigation is to prepare innovative silicone liner-free labels. It can be achieved by the adhesive ‘self protection', thanks to its incorporation into microcapsules. This allows the preparation of ‘dry labels' gluing under the application of a pressure, which induces the rupture of the microcapsules, thus releasing the core material, a pressure sensitive adhesive. The first step was to analyse 3 water-based PSA in view of their encapsulation. Then, the most suitable adhesive was microencapsulated by coacervation (using biopolymer as shell) and by in situ polymerisation. Two other encapsulation processes (spray-cooling and spray-drying), were also carried out at the LAGEP and were compared with the 2 former processes. Coating colour formulations were prepared with spray-cooling microcapsules (the most adhesive ones). Coating trials were carried out with a Meyer rod, and by screen printing. Compatibility between microcapsules and the label making process, using a flexographic printing press, was determined. Finally, the mains characteristics of the prepared innovative products (adhesion, application pressure) were compared to industrial self-adhesive homologues, and found that they could be suitable for the preparation of silicon liner-free envelops and stamps
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Mhlana, Kanyisile. "Microencapsulation of anti-tuberculosis drugs using sporopollenin". Thesis, Nelson Mandela University, 2017. http://hdl.handle.net/10948/13912.

Texto completo da fonte
Resumo:
In this thesis, we explore the benefits of microencapsulating isoniazid and pyrazinamide within sporopollenin exine capsules derived from Lycopodium clavatum. Sporopollenin is a natural biopolymer, which is extracted from the outer shell of pollen grains. These hollow microcapsules can encapsulate and release drug actives in a controlled manner and possess many other advantages such as homogeneity in morphology and size, resilience to both strong acids and bases, they have antioxidant properties as well as UV protection to protect the material inside the microcapsule. Compared to artificial microcapsules, sporopollenin’s muco-adhesion to intestinal tissues contributes greatly to the extended contact of the sporopollenin with the intestines leading to an increased efficiency of delivery of drugs. The hollow microcapsules can be easily filled with a solution of the active or active in a liquid form by simply mixing both together. The drug actives are released in the human body depending on pH factors. Active release can otherwise have controlled by adding a coating on the shell, or co-encapsulation with the active inside the shell so that high drug concentrations are delivered to the site of infection. Encapsulation of the drug active will possibly improve therapeutic abilities of the drugs; simplify the treatment of TB-HIV coinfections by eliminating troublesome drug-drug interactions and drastically reduce or eliminates side effects. The SECs were loaded using a passive filling method. The drug active (0.1 g) was dissolved in a solvent and mixed with the SECs (0.1 g) for 10 minutes. After mixing for 10 minutes, the solvent was removed by a rotary evaporator and dried to a constant mass. The surface of the sporopollenin exines were analysed on a FTIR to observe if there are any drug deposits on the surface of the SECs. The loading efficiency and drug release percentage was determined by using calibrations curves and analysed on a UV-vis spectrophotometer. Further work has been proposed in which to characterize the SECs further and producing coated tablets from loaded SECs.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Microencapsulation"

1

Opara, Emmanuel C., ed. Cell Microencapsulation. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6364-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

DiMari, S., W. Funke, M. A. Haralson, D. Hunkeler, B. Joos-Müller, A. Matsumoto, O. Okay et al., eds. Microencapsulation Microgels Iniferters. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-69682-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

S, DiMari, ed. Microencapsulation, microgels, iniferters. Berlin: Springer, 1998.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

1938-, Whateley Tony L., ed. Microencapsulation of drugs. Chur, Switzerland: Harwood Academic Publishers, 1992.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Chang, T. M. S., ed. Microencapsulation and Artificial Cells. Totowa, NJ: Humana Press, 1985. http://dx.doi.org/10.1007/978-1-4612-5182-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Luis, Pedraz José, e Orive Gorka, eds. Therapeutic applications of cell microencapsulation. New York: Springer Science+Business Media, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kwak, Hae-Soo, ed. Nano- and Microencapsulation for Foods. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118292327.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Pedraz, José Luis, e Gorka Orive, eds. Therapeutic Applications of Cell Microencapsulation. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5786-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Mahmood, Arshad. Microencapsulation strategies for islet transplantation. Birmingham: Aston University. Department of Pharmaceutical Sciences, 1994.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

1947-, Benita Simon, ed. Microencapsulation: Methods and industrial applications. 2a ed. New York: Taylor & Francis, 2006.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Microencapsulation"

1

Gooch, Jan W. "Microencapsulation". In Encyclopedic Dictionary of Polymers, 461–62. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_7476.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Hangay, George, Susan V. Gruner, F. W. Howard, John L. Capinera, Eugene J. Gerberg, Susan E. Halbert, John B. Heppner et al. "Microencapsulation". In Encyclopedia of Entomology, 2379. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_4598.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Roques-Carmes, Claude, e Christine Millot. "Microencapsulation". In Nanomaterials and Surface Engineering, 89–108. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118618523.ch4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Mishra, Munmaya, e Biao Duan. "Microencapsulation". In The Essential Handbook of Polymer Terms and Attributes, 106–8. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003161318-106.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Lim, Grace J., Shirin Zare, Mark Van Dyke e Anthony Atala. "Cell Microencapsulation". In Advances in Experimental Medicine and Biology, 126–36. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5786-3_11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Augustin, Mary Ann, e Luz Sanguansri. "Microencapsulation Technologies". In Engineering Foods for Bioactives Stability and Delivery, 119–42. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6595-3_4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

de Vos, Paul. "Historical Perspectives and Current Challenges in Cell Microencapsulation". In Cell Microencapsulation, 3–21. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6364-5_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

McQuilling, John Patrick, e Emmanuel C. Opara. "Methods for Incorporating Oxygen-Generating Biomaterials into Cell Culture and Microcapsule Systems". In Cell Microencapsulation, 135–41. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6364-5_10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Paredes-Juarez, Genaro A., Brad P. Barnett e Jeff W. M. Bulte. "Noninvasive Tracking of Alginate-Microencapsulated Cells". In Cell Microencapsulation, 143–55. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6364-5_11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

McQuilling, John Patrick, Sivanandane Sittadjody, Rajesh Pareta, Samuel Pendergraft, Clancy J. Clark, Alan C. Farney e Emmanuel C. Opara. "Retrieval of Microencapsulated Islet Grafts for Post-transplant Evaluation". In Cell Microencapsulation, 157–71. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6364-5_12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Microencapsulation"

1

Geranpour, Mansoureh, Zahra Emam-Djomeh e Gholamhassan Asadi. "Microencapsulation of pumpkin seed oil by spray dryer under various process conditions and determination of the optimal point by RSM". In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7332.

Texto completo da fonte
Resumo:
The objective of this research was to microencapsulating the pumpkin seed oil (PSO) by the spray dryer and also investigating the effects of some process conditions on physicochemical properties of PSO microparticles. Inlet drying air temperature (140-180 ͦC), aspirator rate (55-75%), and peristaltic pump rate (5-15%) effects were studied. Moisture content (%W.b.), Microencapsulation Efficiency (MEE, %) and Peroxide value (POV, meq/kg sample) considered as model responses. Consequently, the ideal drying state for microencapsulation of PSO as a result of optimizing by Response Surface Methodology (RSM) determined with the aim of minimizing the Moisture content and POV and maximizing the MEE. Keywords: Microencapsulation; spray dryer; pumpkin seed oil; optimization; RSM.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Subramanian, Pravin K., e Abdelfattah Zebib. "Marangoni Instabilities in Microencapsulation". In ASME 2003 International Mechanical Engineering Congress and Exposition. ASME, 2003. http://dx.doi.org/10.1115/imece2003-41377.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Subramanian, Pravin K., Abdelfattah Zebib e Barry McQuillan. "Axisymmetric Solutocapillary Convection in Microencapsulation". In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60817.

Texto completo da fonte
Resumo:
Hollow spherical shells used as laser targets in inertial confinement fusion (ICF) experiments are made by microencapsulation. In one phase of manufacturing, the spherical shells contain a solvent (fluorobenzene, FB) and a solute (polystyrene, PAMS) in a water-FB environment. As the solvent evaporates it leaves behind the desired hardened plastic spherical shells, 1–2 mm in diameter. Perfect sphericity is demanded for efficient fusion ignition. Marangoni instabilities driven by surface tension dependence on the FB concentration could be the source of the observed surface roughness (buoyant forces are negligible in this micro-scale problem). Here we model this drying process, investigate conditions for incipient instabilities, and compute nonlinear axisymmetric convection.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Lopez Hernandez, Arianne. "Influence of Surfactants on Microencapsulation". In Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.254.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Xiaoxiao Zhang, Aaron T. Ohta e David Garmire. "Rapid monodisperse microencapsulation of single cells". In 2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010). IEEE, 2010. http://dx.doi.org/10.1109/iembs.2010.5627084.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Nurhayati, Retno Wahyu, Wildan Mubarok, Rafianto Dwi Cahyo e Kamila Alawiyah. "Oil immersion technique for cellular microencapsulation". In THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5139325.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Lopez, Arianne, Maria Cano, Manuel José Lis e Hendrick Lezeck. "Microencapsulation of Essential oils with biopolymers". In 15th Mediterranean Congress of Chemical Engineering (MeCCE-15). Grupo Pacífico, 2022. http://dx.doi.org/10.48158/mecce-15.t1-p-09.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Sedky, S., H. Tawfik, A. Abdel Aziz, S. ElSaegh, A. B. Graham, J. Provine e R. T. Howe. "Low thermal-budget silicon sealed-cavity microencapsulation process". In 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2011. http://dx.doi.org/10.1109/memsys.2011.5734415.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Javed, Fatima, e Maxim A. Mironov. "Microencapsulation of vitamin D by using natural polymers". In PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019): Proceedings of the VI International Young Researchers’ Conference. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5134370.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

SHAO, Wenyao, Mengwen YAN, Quanling XIE e Xueshan PAN. "Microencapsulation of DHA Algal Oil by Spray Drying". In International Conference on Biological Engineering and Pharmacy 2016 (BEP 2016). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/bep-16.2017.17.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Microencapsulation"

1

Baldeschwieler, John D. Development of Microencapsulation Techniques. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1986. http://dx.doi.org/10.21236/ada185019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Haslbeck, Elizabeth G. Microencapsulation of Biocides for Reduced Copper, Long-life Antifouling Coatings. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2007. http://dx.doi.org/10.21236/ada603499.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

MILIAN, L. W., P. R. LAGERAAEN, J. W. ADAMS e P. D. KALB. TREATABILITY STUDY FOR POLYETHYLENE MICROENCAPSULATION OF COMMERCIALLY GENERATED DSSI ASH MIXED WASTE. Office of Scientific and Technical Information (OSTI), junho de 1998. http://dx.doi.org/10.2172/767118.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

MILIAN, L. W., P. R. LAGERAAEN, J. W. ADAMS e P. D. KALB. TREATABILITY STUDY FOR POLYETHYLENE MICROENCAPSULATION OF COMMERCIALLY GENERATED DSSI ASH MIXED WASTE. Office of Scientific and Technical Information (OSTI), junho de 1998. http://dx.doi.org/10.2172/767175.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

LAGERAAEN, P. R., P. D. KALB, L. W. MILIAN e J. W. ADAMS. DEVELOPMENT AND DEMONSTRATION OF POLYMER MICROENCAPSULATION OF MIXED WASTE USING KINETIC MIXER PROCESSING. Office of Scientific and Technical Information (OSTI), novembro de 1997. http://dx.doi.org/10.2172/761002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Enstrom, K. G., E. Lee e C. Ye. Requirements Document for the Design and Implementation of a Personalized Medicine Machine (PMM) Based on Microencapsulation. Office of Scientific and Technical Information (OSTI), agosto de 2019. http://dx.doi.org/10.2172/1557040.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Worley, C. Surface characterization of an energetic material, pentaerythritoltetranitrate (PETN), having a thin coating achieved through a starved addition microencapsulation technique. Office of Scientific and Technical Information (OSTI), maio de 1986. http://dx.doi.org/10.2172/5630415.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia