Artigos de revistas sobre o tema "Microcracked microstructure"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Microcracked microstructure".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Freim, John, J. McKittrick, W. J. Nellis e J. D. Katz. "Development of novel microstructures in zirconia-toughened alumina using rapid solidification and shock compaction". Journal of Materials Research 11, n.º 1 (janeiro de 1996): 110–19. http://dx.doi.org/10.1557/jmr.1996.0014.
Texto completo da fonteSevostianov, I., L. Gorbatikh e M. Kachanov. "Recovery of information on the microstructure of porous/microcracked materials from the effective elastic/conductive properties". Materials Science and Engineering: A 318, n.º 1-2 (novembro de 2001): 1–14. http://dx.doi.org/10.1016/s0921-5093(01)01694-x.
Texto completo da fonteZeng, Qiu Lian, Zhong Guang Wang e J. K. Shang. "Microstructural Effects on Low Cycle Fatigue of Sn-3.8Ag-0.7Cu Pb-Free Solder". Key Engineering Materials 345-346 (agosto de 2007): 239–42. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.239.
Texto completo da fonteKilicli, Volkan. "Development of an eutectic-based self-healing in Al–Si cast alloy". Materials Testing 64, n.º 3 (1 de março de 2022): 371–77. http://dx.doi.org/10.1515/mt-2021-2045.
Texto completo da fonteBalart, MarÍa J., Xinjiang Hao e Claire L. Davis. "Automated SEM/EDS Analysis for Assessment of Trace Cross-Contamination in 316L Stainless Steel Powders". Metallurgical and Materials Transactions A 53, n.º 2 (1 de dezembro de 2021): 345–58. http://dx.doi.org/10.1007/s11661-021-06474-4.
Texto completo da fonteMyer, L. R., J. M. Kemeny, Z. Zheng, R. Suarez, R. T. Ewy e N. G. W. Cook. "Extensile Cracking in Porous Rock Under Differential Compressive Stress". Applied Mechanics Reviews 45, n.º 8 (1 de agosto de 1992): 263–80. http://dx.doi.org/10.1115/1.3119758.
Texto completo da fonteJu, J. W., e Tsung-Muh Chen. "Effective Elastic Moduli of Two-Dimensional Brittle Solids With Interacting Microcracks, Part I: Basic Formulations". Journal of Applied Mechanics 61, n.º 2 (1 de junho de 1994): 349–57. http://dx.doi.org/10.1115/1.2901451.
Texto completo da fonteLi, Xu-Dong. "K Variations and Anisotropy: Microstructure Effect and Numerical Predictions". Journal of Engineering Materials and Technology 125, n.º 1 (31 de dezembro de 2002): 65–74. http://dx.doi.org/10.1115/1.1525252.
Texto completo da fonteWang, Heng, Zhanli Liu, Dandan Xu, Qinglei Zeng e Zhuo Zhuang. "Extended finite element method analysis for shielding and amplification effect of a main crack interacted with a group of nearby parallel microcracks". International Journal of Damage Mechanics 25, n.º 1 (29 de dezembro de 2014): 4–25. http://dx.doi.org/10.1177/1056789514565933.
Texto completo da fonteLu, Houdi, Hongtao Wang, Haitao Wang, Lie Jin, Xinxin Wu e Yu Zhou. "FM-DBEM Simulation of 3D Microvoid and Microcrack Graphite Models". Science and Technology of Nuclear Installations 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/1071709.
Texto completo da fonteAretusi, Giuliano, Christian Cardillo, Larry Murcia Terranova e Ewa Bednarczyk. "A dissipation model for concrete based on an enhanced Timoshenko beam". Networks and Heterogeneous Media 19, n.º 2 (2024): 700–723. http://dx.doi.org/10.3934/nhm.2024031.
Texto completo da fonteEterashvili, Tamaz, T. Dzigrashvili e M. Vardosanidze. "Dislocation Clusters and Microcracks in Thin Films of LCF-Tested Austenitic Steel". Key Engineering Materials 577-578 (setembro de 2013): 237–40. http://dx.doi.org/10.4028/www.scientific.net/kem.577-578.237.
Texto completo da fonteEterashvili, Tamaz, Temur Dzigrashvili e Manana Vardosanidze. "Trajectory and Crystallography of Crack Growth in Austenitic Steel after LCF Tests". Key Engineering Materials 592-593 (novembro de 2013): 793–96. http://dx.doi.org/10.4028/www.scientific.net/kem.592-593.793.
Texto completo da fonteBian, Gui Xue, Yue Liang Chen, Jian Jun Hu e Yong Zhang. "Fatigue Microcrack Initiation and Propagation of Aluminum Alloy under Different Stress Level and Stress Ratio". Advanced Materials Research 239-242 (maio de 2011): 1495–500. http://dx.doi.org/10.4028/www.scientific.net/amr.239-242.1495.
Texto completo da fonteEterashvili, Tamaz, T. Dzigrashvili e M. Vardosanidze. "Deviations of Microcrack during Propagation in Thin Films of Austenitic Steel and Accompanying Accommodative Processes". Key Engineering Materials 627 (setembro de 2014): 297–300. http://dx.doi.org/10.4028/www.scientific.net/kem.627.297.
Texto completo da fonteIjbara, Manhal, Kanae Wada, Makoto J. Tabata, Junichiro Wada, Go Inoue e Michiyo Miyashin. "Enamel Microcracks Induced by Simulated Occlusal Wear in Mature, Immature, and Deciduous Teeth". BioMed Research International 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/5658393.
Texto completo da fonteLagoeiro, Leonardo, Paola Ferreira e Cristiane Castro. "Crystallographic Control on the Development of Texture in Precipitated Quartz Grains". Materials Science Forum 495-497 (setembro de 2005): 57–62. http://dx.doi.org/10.4028/www.scientific.net/msf.495-497.57.
Texto completo da fonteChen, Yiwei, e Pingchuan Dong. "Modeling of Characteristics of Complex Microstructure and Heterogeneity at the Core Scale". Applied Sciences 14, n.º 23 (6 de dezembro de 2024): 11385. https://doi.org/10.3390/app142311385.
Texto completo da fonteRusnaldy, Rusnaldy, Pratama Eka Putra Sijabat, Paryanto Paryanto e Toni Prahasto. "Effect of Using Coolant on the Formation of Microcracks, Burr and Delamination in Bone Drilling Process". Journal of Biomedical Science and Bioengineering 1, n.º 1 (8 de abril de 2021): 17–26. http://dx.doi.org/10.14710/jbiomes.2021.v1i1.17-26.
Texto completo da fonteWang, S. S., E. S. M. Chim e H. Suemasu. "Mechanics of Fatigue Damage and Degradation in Random Short-Fiber Composites, Part I—Damage Evolution and Accumulation". Journal of Applied Mechanics 53, n.º 2 (1 de junho de 1986): 339–46. http://dx.doi.org/10.1115/1.3171762.
Texto completo da fonteSakaida, Yoshihisa, Hajime Yoshida e Shotaro Mori. "Influences of Crack Face Bridging Stress and Microstructure on Fracture Toughness of Toughened Alumina Ceramics". Key Engineering Materials 462-463 (janeiro de 2011): 972–78. http://dx.doi.org/10.4028/www.scientific.net/kem.462-463.972.
Texto completo da fonteNie, Baohua, Shuai Liu, Xianyi Huang, Haiying Qi, Binqing Shi, Zihua Zhao e Dongchu Chen. "Low Cycle Fatigue Crack Damage Behavior of TC21 Titanium Alloy with Basketweave Microstructure". Crystals 12, n.º 9 (28 de agosto de 2022): 1211. http://dx.doi.org/10.3390/cryst12091211.
Texto completo da fonteXing, Wen Jing. "Microstructure of Copper Alloy Effects on Cavitation Damage". Advanced Materials Research 239-242 (maio de 2011): 575–79. http://dx.doi.org/10.4028/www.scientific.net/amr.239-242.575.
Texto completo da fontePan, Suping, Mingzhu Fu, Huiqun Liu, Yuqiang Chen e Danqing Yi. "In Situ Observation of the Tensile Deformation and Fracture Behavior of Ti–5Al–5Mo–5V–1Cr–1Fe Alloy with Different Microstructures". Materials 14, n.º 19 (3 de outubro de 2021): 5794. http://dx.doi.org/10.3390/ma14195794.
Texto completo da fonteTomić, Zoran, Tomislav Jarak, Tomislav Lesičar, Nenad Gubeljak e Zdenko Tonković. "Modelling of Fatigue Microfracture in Porous Sintered Steel Using a Phase-Field Method". Materials 16, n.º 11 (3 de junho de 2023): 4174. http://dx.doi.org/10.3390/ma16114174.
Texto completo da fonteShah, Kausar Sultan, Mohd Hazizan Bin Mohd Hashim, Hafeezur Rehman e Kamar Shah Ariffin. "Effect of Wet-Dry Cycling on the Microstructure of Various Weathering Grade Sandstone". Applied Mechanics and Materials 920 (5 de março de 2024): 183–87. http://dx.doi.org/10.4028/p-103kzt.
Texto completo da fonteHan, Yongming, Xinyuan Cao, Yonghao Lu e Tetsuo Shoji. "Deformation Properties of Thermally Aged E308L Stainless Steel During Tensile Test with Carbide Effects". Materials 17, n.º 24 (12 de dezembro de 2024): 6070. https://doi.org/10.3390/ma17246070.
Texto completo da fonteHu, Liang, Bo Gao, Ning Xu, Yue Sun, Ying Zhang e Pengfei Xing. "Effect of Cerium and Magnesium on Surface Microcracks of Al–20Si Alloys Induced by High-Current Pulsed Electron Beam". Coatings 12, n.º 1 (5 de janeiro de 2022): 61. http://dx.doi.org/10.3390/coatings12010061.
Texto completo da fonteKim, Chan-Joong, Ki-Baik Kim, In-Soon Chang, Dong-Yeon Won, Hong-Chul Moon e Dong-Soo Suhr. "The effect of Y2Ba1Cu1O5 addition on microstructure and formation of microcracks in the partially melted Y–Ba–Cu–O oxides". Journal of Materials Research 8, n.º 4 (abril de 1993): 699–704. http://dx.doi.org/10.1557/jmr.1993.0699.
Texto completo da fonteKarthik, Chinnathambi, Joshua Kane, Darryl P. Butt, William E. Windes e Rick Ubic. "Microstructural Characterization of Next Generation Nuclear Graphites". Microscopy and Microanalysis 18, n.º 2 (23 de janeiro de 2012): 272–78. http://dx.doi.org/10.1017/s1431927611012360.
Texto completo da fonteWang, Zheng, Juanping Xu, Yu Yan e Jinxu Li. "The Influence of Microstructure on the Mechanical Properties and Fracture Behavior of Medium Mn Steels at Different Strain Rates". Materials 12, n.º 24 (17 de dezembro de 2019): 4228. http://dx.doi.org/10.3390/ma12244228.
Texto completo da fonteTuz, Lechosław, Aneta Ziewiec e Krzysztof Pańcikiewicz. "Influence of the Thermal Cutting Process on Cracking of Pearlitic Steels". Materials 14, n.º 5 (8 de março de 2021): 1284. http://dx.doi.org/10.3390/ma14051284.
Texto completo da fonteGomez, Quriaky, Oana Ciobanu e Ioan R. Ionescu. "Numerical modeling of wave propagation in a cracked solid". Mathematics and Mechanics of Solids 24, n.º 9 (23 de janeiro de 2019): 2895–913. http://dx.doi.org/10.1177/1081286518821407.
Texto completo da fonteXue, Guanming, Yingchao Sun, Ling Xiang, Zhiguo Wang, Suying Hu e Zhiwen Xie. "Effect of Vacuum Annealing on Microstructure and Hot-Salt Corrosion Behavior of CoNiCrAlY/YSZ/LaMgAl11O19 Double-Ceramic Coating". Coatings 11, n.º 8 (9 de agosto de 2021): 951. http://dx.doi.org/10.3390/coatings11080951.
Texto completo da fonteNordmark, Heidi, Alexander G. Ulyashin, John Charles Walmsley e Randi Holmestad. "A Comparative Analysis of Structural Defect Formation in Si+ Implanted and then Plasma Hydrogenated and in H+ Implanted Crystalline Silicon". Solid State Phenomena 131-133 (outubro de 2007): 309–14. http://dx.doi.org/10.4028/www.scientific.net/ssp.131-133.309.
Texto completo da fonteLi, Yongqiang, Yaoming Luo, Hangyu Du, Wei Liu, Luping Tang e Feng Xing. "Evolution of Microstructural Characteristics of Carbonated Cement Pastes Subjected to High Temperatures Evaluated by MIP and SEM". Materials 15, n.º 17 (1 de setembro de 2022): 6037. http://dx.doi.org/10.3390/ma15176037.
Texto completo da fonteZhu, Tian Ping, Zhan W. Chen e Wei Gao. "Effects of Microstructure and Partial Melting on Tensile Properties of AZ91 Magnesium Cast Alloy". Materials Science Forum 546-549 (maio de 2007): 65–68. http://dx.doi.org/10.4028/www.scientific.net/msf.546-549.65.
Texto completo da fonteKraišnik, Milija, Robert Čep, Karel Kouřil, Sebastian Baloš, Aco Antić e Mladomir Milutinović. "Characterization of Microstructural Damage and Failure Mechanisms in C45E Structural Steel under Compressive Load". Crystals 12, n.º 3 (19 de março de 2022): 426. http://dx.doi.org/10.3390/cryst12030426.
Texto completo da fonteZhao, Lun, Yunlong Pan, Sen Wang, Liang Zhang e Md Shafiqul Islam. "A Hybrid Crack Detection Approach for Scanning Electron Microscope Image Using Deep Learning Method". Scanning 2021 (9 de agosto de 2021): 1–13. http://dx.doi.org/10.1155/2021/5558668.
Texto completo da fonteFu, Mingzhu, Suping Pan, Huiqun Liu e Yuqiang Chen. "Initial Microstructure Effects on Hot Tensile Deformation and Fracture Mechanisms of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy Using In Situ Observation". Crystals 12, n.º 7 (1 de julho de 2022): 934. http://dx.doi.org/10.3390/cryst12070934.
Texto completo da fonteLv, Haiyang, Rongfeng Zhou, Lu Li, Haitao Ni, Jiang Zhu e Tong Feng. "Effect of Electric Current Pulse on Microstructure and Corrosion Resistance of Hypereutectic High Chromium Cast Iron". Materials 11, n.º 11 (8 de novembro de 2018): 2220. http://dx.doi.org/10.3390/ma11112220.
Texto completo da fonteDönges, Benjamin, Claus Peter Fritzen e Hans Jürgen Christ. "Experimental Investigation and Simulation of the Fatigue Mechanisms of a Duplex Stainless Steel under HCF and VHCF Loading Conditions". Key Engineering Materials 664 (setembro de 2015): 267–74. http://dx.doi.org/10.4028/www.scientific.net/kem.664.267.
Texto completo da fontePikos, Izabela, Tomasz Rzychoń e Andrzej Kiełbus. "Microstructural Phenomenon Occurring in Elektron 21 Magnesium Alloy During Creep". Materials Science Forum 782 (abril de 2014): 339–43. http://dx.doi.org/10.4028/www.scientific.net/msf.782.339.
Texto completo da fonteYang, Hucheng, Shengrui Su, Peng Li e Jianxun Chen. "Investigation of the Microstructure Characteristics and Deformation Mechanisms of the Carbonaceous Slate under Hydromechanical Coupling". Geofluids 2023 (21 de fevereiro de 2023): 1–16. http://dx.doi.org/10.1155/2023/5490136.
Texto completo da fontevan der Burg, M. W. D., e E. van der Giessen. "Simulation of Microcrack Propagation in Creeping Polycrystals Due to Diffusive Grain Boundary Cavitation". Applied Mechanics Reviews 47, n.º 1S (1 de janeiro de 1994): S122—S131. http://dx.doi.org/10.1115/1.3122807.
Texto completo da fonteWang, Jiang, Zhen Wang, Qingxuan Sui, Shurong Xu, Quan Yuan, Dong Zhang e Jun Liu. "A Comparison of the Microstructure, Mechanical Properties, and Corrosion Resistance of the K213 Superalloy after Conventional Casting and Selective Laser Melting". Materials 16, n.º 4 (4 de fevereiro de 2023): 1331. http://dx.doi.org/10.3390/ma16041331.
Texto completo da fonteStone, B. M., I. J. Jordaan, J. Xiao e S. J. Jones. "Experiments on the damage process in ice under compressive states of stress". Journal of Glaciology 43, n.º 143 (1997): 11–25. http://dx.doi.org/10.3189/s002214300000277x.
Texto completo da fonteStone, B. M., I. J. Jordaan, J. Xiao e S. J. Jones. "Experiments on the damage process in ice under compressive states of stress". Journal of Glaciology 43, n.º 143 (1997): 11–25. http://dx.doi.org/10.1017/s002214300000277x.
Texto completo da fonteHuang, Xin, Aijuan Li, Zhen Huang, Yi Sun, Yumin Song e Ning Xu. "Research on Forward Problem of Rail Detection Based on Magnetoacoustic Coupling". Sensors 22, n.º 15 (25 de julho de 2022): 5539. http://dx.doi.org/10.3390/s22155539.
Texto completo da fonteDong, Yijia, Chao Su, Pizhong Qiao e LZ Sun. "Microstructural damage evolution and its effect on fracture behavior of concrete subjected to freeze-thaw cycles". International Journal of Damage Mechanics 27, n.º 8 (12 de julho de 2018): 1272–88. http://dx.doi.org/10.1177/1056789518787025.
Texto completo da fonte