Artigos de revistas sobre o tema "Microchannel absorber"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 49 melhores artigos de revistas para estudos sobre o assunto "Microchannel absorber".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Goel, Nitin, e D. Yogi Goswami. "Experimental Verification of a New Heat and Mass Transfer Enhancement Concept in a Microchannel Falling Film Absorber". Journal of Heat Transfer 129, n.º 2 (26 de maio de 2006): 154–61. http://dx.doi.org/10.1115/1.2402182.
Texto completo da fonteAlston, Mark E. "Optimal Microchannel Planar Reactor as a Switchable Infrared Absorber". MRS Advances 2, n.º 14 (2017): 783–89. http://dx.doi.org/10.1557/adv.2017.112.
Texto completo da fonteSui, Zengguang, Wei Wu, Tian You, Zhanying Zheng e Michael Leung. "Performance investigation and enhancement of membrane-contactor microchannel absorber towards compact absorption cooling". International Journal of Heat and Mass Transfer 169 (abril de 2021): 120978. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.120978.
Texto completo da fonteKim, Yoon Jo, Yogendra K. Joshi e Andrei G. Fedorov. "Performance analysis of air-cooled microchannel absorber in absorptionbased miniature electronics cooling system". Journal of Mechanical Science and Technology 22, n.º 2 (fevereiro de 2008): 338–49. http://dx.doi.org/10.1007/s12206-007-1034-5.
Texto completo da fonteGarcía-Hernando, N., M. Venegas e M. de Vega. "Experimental performance comparison of three flat sheet membranes operating in an adiabatic microchannel absorber". Applied Thermal Engineering 152 (abril de 2019): 835–43. http://dx.doi.org/10.1016/j.applthermaleng.2019.02.129.
Texto completo da fonteSui, Zengguang, Chong Zhai e Wei Wu. "Swirling flow for performance improvement of a microchannel membrane-based absorber with discrete inclined grooves". International Journal of Refrigeration 130 (outubro de 2021): 382–91. http://dx.doi.org/10.1016/j.ijrefrig.2021.05.039.
Texto completo da fonteSui, Zengguang, Chong Zhai e Wei Wu. "Parametric and comparative study on enhanced microchannel membrane-based absorber structures for compact absorption refrigeration". Renewable Energy 187 (março de 2022): 109–22. http://dx.doi.org/10.1016/j.renene.2022.01.052.
Texto completo da fonteMotamedi, Mahdi, Chia-Yang Chung, Mehdi Rafeie, Natasha Hjerrild, Fan Jiang, Haoran Qu e Robert A. Taylor. "Experimental Testing of Hydrophobic Microchannels, with and without Nanofluids, for Solar PV/T Collectors". Energies 12, n.º 15 (6 de agosto de 2019): 3036. http://dx.doi.org/10.3390/en12153036.
Texto completo da fonteSui, Zengguang, Yunren Sui e Wei Wu. "Multi-objective optimization of a microchannel membrane-based absorber with inclined grooves based on CFD and machine learning". Energy 240 (fevereiro de 2022): 122809. http://dx.doi.org/10.1016/j.energy.2021.122809.
Texto completo da fonteWei, Xinghua, Rijing Zhao, Siyuan Wu, Shouzhen Wang e Dong Huang. "Effect of rhombus mesh on 3D falling film flow characteristics over microchannel flat tube for LiBr (Lithium bromide) absorber". International Journal of Heat and Mass Transfer 209 (agosto de 2023): 124097. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2023.124097.
Texto completo da fonteZhai, Chong, Yunren Sui e Wei Wu. "Machine learning-assisted correlations of heat/mass transfer and pressure drop of microchannel membrane-based desorber/absorber for compact absorption cycles". International Journal of Heat and Mass Transfer 214 (novembro de 2023): 124431. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2023.124431.
Texto completo da fontede Vega, Mercedes, María Venegas e Néstor García-Hernando. "Modeling and performance analysis of an absorption chiller with a microchannel membrane-based absorber using LiBr-H2 O, LiCl-H2 O, and LiNO3 -NH3". International Journal of Energy Research 42, n.º 11 (15 de maio de 2018): 3544–58. http://dx.doi.org/10.1002/er.4098.
Texto completo da fonteKurniawati, Ischia, e Yonmo Sung. "A Review of Heat Dissipation and Absorption Technologies for Enhancing Performance in Photovoltaic–Thermal Systems". Energies 17, n.º 7 (3 de abril de 2024): 1721. http://dx.doi.org/10.3390/en17071721.
Texto completo da fonteOyinlola, M. A., G. S. F. Shire e R. W. Moss. "Thermal analysis of a solar collector absorber plate with microchannels". Experimental Thermal and Fluid Science 67 (outubro de 2015): 102–9. http://dx.doi.org/10.1016/j.expthermflusci.2014.10.014.
Texto completo da fonteGuan, Dong, Jiu Hui Wu, Li Jing e Kuan Lu. "Lattice Boltzmann simulation of acoustic resistance in microchannels". International Journal of Modern Physics B 29, n.º 16 (23 de junho de 2015): 1550104. http://dx.doi.org/10.1142/s0217979215501040.
Texto completo da fonteTabatabaei, Seyed Ali, Mohammad Zabetian Targhi, Javane Javaherchian e Marzieh Yaghoubi. "Basic concepts of biological microparticles isolation by inertia spiral microchannels in simple terms: a review". Journal of Micromechanics and Microengineering 32, n.º 1 (26 de novembro de 2021): 013001. http://dx.doi.org/10.1088/1361-6439/ac388c.
Texto completo da fonteMihai, Ioan, Cornel Suciu e Claudiu Marian Picus. "Particularities of R134a Refrigerant Temperature Variations in a Transient Convective Regime during Vaporization in Rectangular Microchannels". Micromachines 13, n.º 5 (13 de maio de 2022): 767. http://dx.doi.org/10.3390/mi13050767.
Texto completo da fonteKono, Ippei, Naohiko Sugita e Mamoru Mitsuishi. "Simulation of Laser Micromachining in Silica Glass with Absorbent Slurry". International Journal of Automation Technology 4, n.º 3 (5 de maio de 2010): 284–90. http://dx.doi.org/10.20965/ijat.2010.p0284.
Texto completo da fonteMoss, R. W., G. S. F. Shire, P. Henshall, P. C. Eames, F. Arya e T. Hyde. "Optimal passage size for solar collector microchannel and tube-on-plate absorbers". Solar Energy 153 (setembro de 2017): 718–31. http://dx.doi.org/10.1016/j.solener.2017.05.030.
Texto completo da fonteLiu, Chao, Kevin Hong, Xiao Sun, Avi Natan, Pengcheng Luan, Yang Yang e Hongli Zhu. "An ‘antifouling’ porous loofah sponge with internal microchannels as solar absorbers and water pumpers for thermal desalination". Journal of Materials Chemistry A 8, n.º 25 (2020): 12323–33. http://dx.doi.org/10.1039/d0ta03872e.
Texto completo da fonteGlawdel, Tomasz, Zeyad Almutairi, Shuwen Wang e Carolyn Ren. "Photobleaching absorbed Rhodamine B to improve temperature measurements in PDMS microchannels". Lab Chip 9, n.º 1 (2009): 171–74. http://dx.doi.org/10.1039/b805172k.
Texto completo da fonteCosta Pena, Liz, e Cristina Rech Feldmann. "NECK TISSUE REJUVENATION WITH PERCUTANEOUS COLLAGEN INDUCTION, DRUG DELIVERY AND HOME CARE". Health and Society 2, n.º 04 (21 de dezembro de 2022): 140–54. http://dx.doi.org/10.51249/hs.v2i04.1040.
Texto completo da fonteJones, Ian, e Jonathan Griffiths. "Preparation and Sealing of Polymer Microchannels Using Electron Beam Lithography to Pattern Absorber for Laser Welding". MATERIALS TRANSACTIONS 56, n.º 7 (2015): 997–1001. http://dx.doi.org/10.2320/matertrans.mi201402.
Texto completo da fonteSehgal, Shitiz, Jorge L. Alvarado, Ibrahim G. Hassan e Sambhaji T. Kadam. "A comprehensive review of recent developments in falling-film, spray, bubble and microchannel absorbers for absorption systems". Renewable and Sustainable Energy Reviews 142 (maio de 2021): 110807. http://dx.doi.org/10.1016/j.rser.2021.110807.
Texto completo da fonteGao, Dan, Youwei Qi, Jiaxi Yang e Heng Zhang. "Experimental study of carbon dioxide desorption from ethanolamine/non-aqueous CO2-rich absorbent solvent using microchannel". Separation and Purification Technology 331 (março de 2024): 125651. http://dx.doi.org/10.1016/j.seppur.2023.125651.
Texto completo da fonteGekle, Stephan. "Dispersion of solute released from a sphere flowing in a microchannel". Journal of Fluid Mechanics 819 (18 de abril de 2017): 104–20. http://dx.doi.org/10.1017/jfm.2017.177.
Texto completo da fonteAkkarawatkhoosith, Nattee, Wannarak Nopcharoenkul, Amaraporn Kaewchada e Attasak Jaree. "Mass Transfer Correlation and Optimization of Carbon Dioxide Capture in a Microchannel Contactor: A Case of CO2-Rich Gas". Energies 13, n.º 20 (19 de outubro de 2020): 5465. http://dx.doi.org/10.3390/en13205465.
Texto completo da fonteTan, Jinhao, Yushou Song, Jianrong Zhou, Wenqin Yang, Xingfen Jiang, Xiaojuan Zhou, Yuanguang Xia et al. "An energy resolved neutron imaging detector based on boron doped nMCP coupled with a time stamping optical camera". Journal of Instrumentation 19, n.º 01 (1 de janeiro de 2024): P01015. http://dx.doi.org/10.1088/1748-0221/19/01/p01015.
Texto completo da fonteSano, Emi, Chihiro Mori, Naoki Matsuoka, Yuka Ozaki, Keisuke Yagi, Aya Wada, Koichi Tashima et al. "Tetrafluoroethylene-Propylene Elastomer for Fabrication of Microfluidic Organs-on-Chips Resistant to Drug Absorption". Micromachines 10, n.º 11 (19 de novembro de 2019): 793. http://dx.doi.org/10.3390/mi10110793.
Texto completo da fonteMontenegro, Miguel, e Francisco J. Galindo-Rosales. "On the Complex Flow Dynamics of Shear Thickening Fluids Entry Flows". Micromachines 15, n.º 11 (22 de outubro de 2024): 1281. http://dx.doi.org/10.3390/mi15111281.
Texto completo da fonteShamsoddini, Rahim, Bahador Abolpour, Hanie Abbaslou e Hossein Yarahmadi. "SPH modeling and investigation of the effect of the carbon dioxide entry form on its absorption rate in a microchannel containing absorbent aqueous solution". Fuel 371 (setembro de 2024): 132073. http://dx.doi.org/10.1016/j.fuel.2024.132073.
Texto completo da fonteAsim, Muhammad, Jassinnee Milano, Hassan Izhar Khan, Muhammad Hanzla Tahir, M. A. Mujtaba, Abd Halim Shamsuddin, Muhammad Abdullah e M. A. Kalam. "Investigation of Mono-Crystalline Photovoltaic Active Cooling Thermal System for Hot Climate of Pakistan". Sustainability 14, n.º 16 (17 de agosto de 2022): 10228. http://dx.doi.org/10.3390/su141610228.
Texto completo da fonteNagavarapu, Ananda Krishna, e Srinivas Garimella. "Comparative Assessment of Falling-film and Convective-flow Absorption in Microscale Geometries". Journal of Thermal Science and Engineering Applications, 11 de abril de 2022, 1–34. http://dx.doi.org/10.1115/1.4054302.
Texto completo da fonteNagavarapu, Ananda Krishna, e Srinivas Garimella. "Falling-Film Absorption Around Microchannel Tube Banks". Journal of Heat Transfer 135, n.º 12 (27 de setembro de 2013). http://dx.doi.org/10.1115/1.4024261.
Texto completo da fonteChaurasia, Harsh, e Kalvala Srinivas Reddy. "Integrated Model for Comprehensive Performance Investigation of Solar Concentrated Photovoltaic‐Thermal System Embedded with Microchannel Heat Sinks". Energy Technology, 9 de abril de 2024. http://dx.doi.org/10.1002/ente.202400005.
Texto completo da fonteChandrasekaran, Sriram, Matthew Hughes, Girish Kini e Srinivas Garimella. "A microchannel shell-and-tube absorber for ammonia-water absorption". Applied Thermal Engineering, novembro de 2020, 116321. http://dx.doi.org/10.1016/j.applthermaleng.2020.116321.
Texto completo da fonteWang, Xueqing, Haifeng Wu, Yusen Ma, Suilin Wang e Rongji Xu. "Homogenization Function of Microchannel on Heat Absorber with Compound Parabolic Concentrator". Journal of Thermal Science, 17 de outubro de 2022. http://dx.doi.org/10.1007/s11630-022-1609-6.
Texto completo da fonteJenks, Jeromy, e Vinod Narayanan. "Effect of Channel Geometry Variations on the Performance of a Constrained Microscale-Film Ammonia-Water Bubble Absorber". Journal of Heat Transfer 130, n.º 11 (5 de setembro de 2008). http://dx.doi.org/10.1115/1.2970065.
Texto completo da fonteWälchli, R., T. Brunschwiler, B. Michel e D. Poulikakos. "Self-Contained, Oscillating Flow Liquid Cooling System for Thin Form Factor High Performance Electronics". Journal of Heat Transfer 132, n.º 5 (8 de março de 2010). http://dx.doi.org/10.1115/1.4000456.
Texto completo da fonteSui, Zengguang, Yunren Sui e Wei Wu. "Multi-Objective Optimization of a Microchannel Membrane-Based Absorber with Inclined Grooves Based on CFD and Machine Learning". SSRN Electronic Journal, 2021. http://dx.doi.org/10.2139/ssrn.3892177.
Texto completo da fonteLiu, Yang, Yu-Tong Xiong, Shu-Zhou Qu, Yu-Xin Liao, Hao-Sen Kang, Liang Ma, Jing-Wen Zou, Tao-Yuan Du, Hui-Hui Yang e Si-Jing Ding. "Dual‐Plasmonic Ti3C2Tx/CuSe 2D/2D Solar Absorber and A Hydrophilic Device for Efficient Solar‐Driven Water Collection". Solar RRL, 18 de dezembro de 2023. http://dx.doi.org/10.1002/solr.202300935.
Texto completo da fonteHoysall, Dhruv C., Khoudor Keniar e Srinivas Garimella. "Visualization of Two-Phase Flow in Serpentine Heat Exchanger Passages With Microscale Pin Fins". Journal of Heat Transfer 140, n.º 1 (23 de agosto de 2017). http://dx.doi.org/10.1115/1.4037342.
Texto completo da fonteUddin, Rony Rajib, e Gladen Adam. "Numerical Modeling of a Photovoltaic/Microchannel Direct-Expansion Evaporator for a CO2 Heat Pump". Journal of Thermal Science and Engineering Applications 13, n.º 2 (7 de agosto de 2020). http://dx.doi.org/10.1115/1.4047819.
Texto completo da fontePark, Jeongeun, Beomseok Cha, Furkan Ginaz Almus, Mehmet Akif Sahin, Hyochan Kang, Yeseul Kang, Ghulam Destgeer e Jinsoo Park. "Acoustic Waves Coupling with Polydimethylsiloxane in Reconfigurable Acoustofluidic Platform". Advanced Science, 30 de outubro de 2024. http://dx.doi.org/10.1002/advs.202407293.
Texto completo da fontePereira, Ana Teresa, Virginia Chu, Duarte M. F. Prazeres e Joao P. Conde. "Miniaturization of Immunoassays Using Optical Detection with Integrated Amorphous Silicon Photodiodes". MRS Proceedings 1191 (2009). http://dx.doi.org/10.1557/proc-1191-oo08-04.
Texto completo da fonteHeffner, Herman, Marcos Soldera e Andrés Fabián Lasagni. "Optoelectronic performance of indium tin oxide thin films structured by sub-picosecond direct laser interference patterning". Scientific Reports 13, n.º 1 (16 de junho de 2023). http://dx.doi.org/10.1038/s41598-023-37042-y.
Texto completo da fonteChoi, Jihun, Hansol Lee, Bokyeong Sohn, Minjae Song e Sangmin Jeon. "Highly efficient evaporative cooling by all-day water evaporation using hierarchically porous biomass". Scientific Reports 11, n.º 1 (19 de agosto de 2021). http://dx.doi.org/10.1038/s41598-021-96303-w.
Texto completo da fonteCataldo, Filippo, e Yuri Carmelo Crea. "Experimental Analysis and Modeling of a Novel Thermosyphon System for Electronics Cooling". Journal of Electronic Packaging 143, n.º 4 (5 de novembro de 2021). http://dx.doi.org/10.1115/1.4052670.
Texto completo da fonteZhao, Xiaomeng, Heng Zhang, Kit-Ying Chan, Xinyue Huang, Yunfei Yang e Xi Shen. "Tree-Inspired Structurally Graded Aerogel with Synergistic Water, Salt, and Thermal Transport for High-Salinity Solar-Powered Evaporation". Nano-Micro Letters 16, n.º 1 (17 de junho de 2024). http://dx.doi.org/10.1007/s40820-024-01448-8.
Texto completo da fonte