Siga este link para ver outros tipos de publicações sobre o tema: Microbial metabolism.

Artigos de revistas sobre o tema "Microbial metabolism"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Microbial metabolism".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

VINOPAL, R. T. "Microbial Metabolism". Science 239, n.º 4839 (29 de janeiro de 1988): 513.2–514. http://dx.doi.org/10.1126/science.239.4839.513.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Downs, Diana M. "Understanding Microbial Metabolism". Annual Review of Microbiology 60, n.º 1 (outubro de 2006): 533–59. http://dx.doi.org/10.1146/annurev.micro.60.080805.142308.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

ARNAUD, CELIA. "VIEWING MICROBIAL METABOLISM". Chemical & Engineering News 85, n.º 38 (17 de setembro de 2007): 11. http://dx.doi.org/10.1021/cen-v085n038.p011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Wackett, Lawrence P. "Microbial metabolism prediction". Environmental Microbiology Reports 2, n.º 1 (8 de fevereiro de 2010): 217–18. http://dx.doi.org/10.1111/j.1758-2229.2010.00144.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hahn-Hägerdal, Bärbel, e Neville Pamment. "Microbial Pentose Metabolism". Applied Biochemistry and Biotechnology 116, n.º 1-3 (2004): 1207–10. http://dx.doi.org/10.1385/abab:116:1-3:1207.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Wackett, Lawrence P. "Microbial community metabolism". Environmental Microbiology Reports 5, n.º 2 (5 de março de 2013): 333–34. http://dx.doi.org/10.1111/1758-2229.12041.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Wackett, Lawrence P. "Microbial community metabolism". Environmental Microbiology Reports 15, n.º 3 (5 de maio de 2023): 240–41. http://dx.doi.org/10.1111/1758-2229.13161.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Rajini, K. S., P. Aparna, Ch Sasikala e Ch V. Ramana. "Microbial metabolism of pyrazines". Critical Reviews in Microbiology 37, n.º 2 (11 de abril de 2011): 99–112. http://dx.doi.org/10.3109/1040841x.2010.512267.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Chubukov, Victor, Luca Gerosa, Karl Kochanowski e Uwe Sauer. "Coordination of microbial metabolism". Nature Reviews Microbiology 12, n.º 5 (24 de março de 2014): 327–40. http://dx.doi.org/10.1038/nrmicro3238.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ash, Caroline. "Microbial entrainment of metabolism". Science 365, n.º 6460 (26 de setembro de 2019): 1414.10–1416. http://dx.doi.org/10.1126/science.365.6460.1414-j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Nakamura, T. "Microbial Manipulation of Metabolism". Science Translational Medicine 4, n.º 148 (22 de agosto de 2012): 148ec153. http://dx.doi.org/10.1126/scitranslmed.3004777.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Orabi, K. "Microbial metabolism of artemisitene". Phytochemistry 51, n.º 2 (maio de 1999): 257–61. http://dx.doi.org/10.1016/s0031-9422(98)00770-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Rao, AS. "Terminology in microbial metabolism". Biochemical Education 24, n.º 1 (janeiro de 1996): 61–62. http://dx.doi.org/10.1016/s0307-4412(96)80011-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Howland, John L. "Microbial physiology and metabolism". Biochemical Education 23, n.º 2 (abril de 1995): 106. http://dx.doi.org/10.1016/0307-4412(95)90661-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Cerniglia, Carl E., Daniel W. Kelly, James P. Freeman e Dwight W. Miller. "Microbial metabolism of pyrene". Chemico-Biological Interactions 57, n.º 2 (fevereiro de 1986): 203–16. http://dx.doi.org/10.1016/0009-2797(86)90038-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Sonnleitner, B. "Quantitation of microbial metabolism". Antonie van Leeuwenhoek 60, n.º 3-4 (1991): 133–43. http://dx.doi.org/10.1007/bf00430361.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Stoker, C. R., P. J. Boston, R. L. Mancinelli, W. Segal, B. N. Khare e C. Sagan. "Microbial metabolism of tholin". Icarus 85, n.º 1 (maio de 1990): 241–56. http://dx.doi.org/10.1016/0019-1035(90)90114-o.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Alfred, Jane. "Microbial genomes to metabolism". Nature Reviews Genetics 3, n.º 10 (outubro de 2002): 733. http://dx.doi.org/10.1038/nrg922.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Dong, Mei, Xizhi Feng, Ben-Xiang Wang, Takashi Ikejima e Li-Jun Wu. "Microbial Metabolism of Pseudoprotodioscin". Planta Medica 70, n.º 7 (julho de 2004): 637–41. http://dx.doi.org/10.1055/s-2004-827187.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Mikell, Julie Rakel, Wimal Herath e Ikhlas Ahmad Khan. "Microbial Metabolism. Part 12." Chemical and Pharmaceutical Bulletin 59, n.º 6 (2011): 692–97. http://dx.doi.org/10.1248/cpb.59.692.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Heider, Johann, e Georg Fuchs. "Microbial Anaerobic Aromatic Metabolism". Anaerobe 3, n.º 1 (fevereiro de 1997): 1–22. http://dx.doi.org/10.1006/anae.1997.0073.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

McChesney, J., e S. Kouzi. "Microbial Models of Mammalian Metabolism: Sclareol Metabolism". Planta Medica 56, n.º 06 (dezembro de 1990): 693. http://dx.doi.org/10.1055/s-2006-961374.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Raab, Andrea, e Jörg Feldmann. "Microbial Transformation of Metals and Metalloids". Science Progress 86, n.º 3 (agosto de 2003): 179–202. http://dx.doi.org/10.3184/003685003783238671.

Texto completo da fonte
Resumo:
Throughout evolution, microbes have developed the ability to live in nearly every environmental condition on earth. They can grow with or without oxygen or light. Microbes can dissolve or precipitate ores and are able to yield energy from the reduction/oxidation of metal ions. Their metabolism depends on the availability of metal ions in essential amounts and protects itself from toxic amounts of metals by detoxification processes. Metals are metabolised to metallorgano-compounds, bound to proteins or used as catalytic centres of enzymes in biological reactions. Microbes, as every other cell, have developed a whole range of mechanisms for the uptake and excretion of metals and their metabolised compounds. The diversity of microbial metabolism can be illustrated by the fact that certain microbes can be found living on arsenate, which is considered a highly toxic metal for most other forms of live.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Fouillaud, Mireille, e Laurent Dufossé. "Microbial Secondary Metabolism and Biotechnology". Microorganisms 10, n.º 1 (7 de janeiro de 2022): 123. http://dx.doi.org/10.3390/microorganisms10010123.

Texto completo da fonte
Resumo:
In recent decades scientific research has demonstrated that the microbial world is infinitely richer and more surprising than we could have imagined. Every day, new molecules produced by microorganisms are discovered, and their incredible diversity has not yet delivered all of its messages. The current challenge of research is to select from the wide variety of characterized microorganisms and compounds, those which could provide rapid answers to crucial questions about human or animal health or more generally relating to society’s demands for medicine, pharmacology, nutrition or everyday well-being.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Wintermute, Edwin H., e Pamela A. Silver. "Emergent cooperation in microbial metabolism". Molecular Systems Biology 6, n.º 1 (janeiro de 2010): 407. http://dx.doi.org/10.1038/msb.2010.66.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Crunkhorn, Sarah. "Microbial metabolite predicts human metabolism". Nature Reviews Drug Discovery 8, n.º 10 (outubro de 2009): 772–73. http://dx.doi.org/10.1038/nrd3008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Schuetz, R., N. Zamboni, M. Zampieri, M. Heinemann e U. Sauer. "Multidimensional Optimality of Microbial Metabolism". Science 336, n.º 6081 (3 de maio de 2012): 601–4. http://dx.doi.org/10.1126/science.1216882.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

VanHook, Annalisa M. "Microbial metabolites shape lipid metabolism". Science Signaling 13, n.º 627 (14 de abril de 2020): eabc1552. http://dx.doi.org/10.1126/scisignal.abc1552.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Ensign, Scott A. "Microbial Metabolism of Aliphatic Alkenes†". Biochemistry 40, n.º 20 (maio de 2001): 5845–53. http://dx.doi.org/10.1021/bi015523d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Kochanowski, Karl, Uwe Sauer e Elad Noor. "Posttranslational regulation of microbial metabolism". Current Opinion in Microbiology 27 (outubro de 2015): 10–17. http://dx.doi.org/10.1016/j.mib.2015.05.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Heinemann, Matthias, e Uwe Sauer. "Systems biology of microbial metabolism". Current Opinion in Microbiology 13, n.º 3 (junho de 2010): 337–43. http://dx.doi.org/10.1016/j.mib.2010.02.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Kelly, D. P., e J. C. Murrell. "Microbial metabolism of methanesulfonic acid". Archives of Microbiology 172, n.º 6 (15 de novembro de 1999): 341–48. http://dx.doi.org/10.1007/s002030050770.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Codd, G. A. "Environmental regulation of microbial metabolism". Endeavour 10, n.º 1 (janeiro de 1986): 52. http://dx.doi.org/10.1016/0160-9327(86)90063-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

McArthur, George H., e Stephen S. Fong. "Toward Engineering Synthetic Microbial Metabolism". Journal of Biomedicine and Biotechnology 2010 (2010): 1–10. http://dx.doi.org/10.1155/2010/459760.

Texto completo da fonte
Resumo:
The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements inde novoDNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Zhan, Ji-Xun, Yuan-Xing Zhang, Hong-Zhu Guo, Jian Han, Li-Li Ning e De-An Guo. "Microbial Metabolism of Artemisinin byMucorpolymorphosporusandAspergillusniger". Journal of Natural Products 65, n.º 11 (novembro de 2002): 1693–95. http://dx.doi.org/10.1021/np020113r.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Negre, M., M. Gennari, V. Andreoni, R. Ambrosoli e L. Celi. "Microbial metabolism of fluazifop-butyl". Journal of Environmental Science and Health, Part B 28, n.º 5 (outubro de 1993): 545–76. http://dx.doi.org/10.1080/03601239309372841.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Herath, Wimal, Daneel Ferreira, Julie Rakel Mikell e Ikhlas Ahmad Khan. "Microbial Metabolism. Part 5. Dihydrokawain". CHEMICAL & PHARMACEUTICAL BULLETIN 52, n.º 11 (2004): 1372–74. http://dx.doi.org/10.1248/cpb.52.1372.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Herath, Wimal, Daneel Ferreira e Ikhlas A. Khan. "Microbial metabolism. Part 7: Curcumin". Natural Product Research 21, n.º 5 (maio de 2007): 444–50. http://dx.doi.org/10.1080/14786410601082144.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Klitgord, Niels, e Daniel Segrè. "Ecosystems biology of microbial metabolism". Current Opinion in Biotechnology 22, n.º 4 (agosto de 2011): 541–46. http://dx.doi.org/10.1016/j.copbio.2011.04.018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Gennari, Mara, Marco Vincenti, Michèle Nègre e Roberto Ambrosoli. "Microbial metabolism of fenoxaprop-ethyl". Pesticide Science 44, n.º 3 (julho de 1995): 299–303. http://dx.doi.org/10.1002/ps.2780440314.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Martínez-Espinosa, Rosa María, e Carmen Pire. "Molecular Advances in Microbial Metabolism". International Journal of Molecular Sciences 24, n.º 9 (28 de abril de 2023): 8015. http://dx.doi.org/10.3390/ijms24098015.

Texto completo da fonte
Resumo:
Climate change, global pollution due to plastics, greenhouse gasses, or heavy metals among other pollutants, as well as limited natural sources due to unsustainable lifestyles and consumption patterns, are revealing the need for more research to understand ecosystems, biodiversity, and global concerns from the microscale to the macroscale [...]
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Bidkhori, Gholamreza, e Saeed Shoaie. "MIGRENE: The Toolbox for Microbial and Individualized GEMs, Reactobiome and Community Network Modelling". Metabolites 14, n.º 3 (21 de fevereiro de 2024): 132. http://dx.doi.org/10.3390/metabo14030132.

Texto completo da fonte
Resumo:
Understanding microbial metabolism is crucial for evaluating shifts in human host–microbiome interactions during periods of health and disease. However, the primary hurdle in the realm of constraint-based modeling and genome-scale metabolic models (GEMs) pertaining to host–microbiome interactions lays in the efficient utilization of metagenomic data for constructing GEMs that encompass unexplored and uncharacterized genomes. Challenges persist in effectively employing metagenomic data to address individualized microbial metabolisms to investigate host–microbiome interactions. To tackle this issue, we have created a computational framework designed for personalized microbiome metabolisms. This framework takes into account factors such as microbiome composition, metagenomic species profiles and microbial gene catalogues. Subsequently, it generates GEMs at the microbial level and individualized microbiome metabolisms, including reaction richness, reaction abundance, reactobiome, individualized reaction set enrichment (iRSE), and community models. Using the toolbox, our findings revealed a significant reduction in both reaction richness and GEM richness in individuals with liver cirrhosis. The study highlighted a potential link between the gut microbiota and liver cirrhosis, i.e., increased level of LPS, ammonia production and tyrosine metabolism on liver cirrhosis, emphasizing the importance of microbiome-related factors in liver health.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Kiyota, H., S. Otsuka, A. Yokoyama, S. Matsumoto, H. Wada e S. Kanazawa. "Effects of highly volatile organochlorine solvents on nitrogen metabolism and microbial counts". Soil and Water Research 7, No. 3 (10 de julho de 2012): 109–16. http://dx.doi.org/10.17221/30/2011-swr.

Texto completo da fonte
Resumo:
The effects of highly volatile organochlorine solvents (1,1,1-trichloroethane, TCET; trichloroethylene, TCE; and tetrachloroethylene, PCE) on soil nitrogen cycle and microbial counts were investigated using volcanic ash soil with different fertilizations. All the solvents significantly inhibited the activity of the cycle under the sealed conditions with 10 to 50 mg/g (dry soil) solvents added. No significant difference between the solvents, and between fertilization plots, was observed. Nitrate ion was not accumulated, and instead, ammonium ion was highly accumulated in the presence of the solvents. Nitrite ion was partially detected, while l-glutaminase activity was inhibited. The growths of ammonification, nitritation, nitratation and denitrification bacteria, and filamentous fungi were significantly inhibited in the presence of 10 mg/g (dry soil) of the solvents. 
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Kuo, Jimmy, Daniel Liu e Chorng-Horng Lin. "Functional Prediction of Microbial Communities in Sediment Microbial Fuel Cells". Bioengineering 10, n.º 2 (3 de fevereiro de 2023): 199. http://dx.doi.org/10.3390/bioengineering10020199.

Texto completo da fonte
Resumo:
Sediment microbial fuel cells (MFCs) were developed in which the complex substrates present in the sediment could be oxidized by microbes for electron production. In this study, the functional prediction of microbial communities of anode-associated soils in sediment MFCs was investigated based on 16S rRNA genes. Four computational approaches, including BugBase, Functional Annotation of Prokaryotic Taxa (FAPROTAX), the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2), and Tax4Fun2, were applied. A total of 67, 9, 37, and 38 functional features were statistically significant. Among these functional groups, the function related to the generation of precursor metabolites and energy was the only one included in all four computational methods, and the sum total of the proportion was 93.54%. The metabolism of cofactor, carrier, and vitamin biosynthesis was included in the three methods, and the sum total of the proportion was 29.94%. The results suggested that the microbial communities usually contribute to energy metabolism, or the metabolism of cofactor, carrier, and vitamin biosynthesis might reveal the functional status in the anode of sediment MFCs.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Dillard, Lillian R., Dawson D. Payne e Jason A. Papin. "Mechanistic models of microbial community metabolism". Molecular Omics 17, n.º 3 (2021): 365–75. http://dx.doi.org/10.1039/d0mo00154f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Gray, T. R. G., e G. A. Codd. "Aspects of Microbial Metabolism and Ecology." Journal of Applied Ecology 23, n.º 1 (abril de 1986): 357. http://dx.doi.org/10.2307/2403111.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Fitzpatrick, Paul F. "The enzymes of microbial nicotine metabolism". Beilstein Journal of Organic Chemistry 14 (31 de agosto de 2018): 2295–307. http://dx.doi.org/10.3762/bjoc.14.204.

Texto completo da fonte
Resumo:
Because of nicotine’s toxicity and the high levels found in tobacco and in the waste from tobacco processing, there is a great deal of interest in identifying bacteria capable of degrading it. A number of microbial pathways have been identified for nicotine degradation. The first and best-understood is the pyridine pathway, best characterized forArthrobacter nicotinovorans, in which the first reaction is hydroxylation of the pyridine ring. The pyrrolidine pathway, which begins with oxidation of a carbon–nitrogen bond in the pyrrolidine ring, was subsequently characterized in a number of pseudomonads. Most recently, a hybrid pathway has been described, which incorporates the early steps in the pyridine pathway and ends with steps in the pyrrolidine pathway. This review summarizes the present status of our understanding of these pathways, focusing on what is known about the individual enzymes involved.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Wu, Bo, Feifei Liu, Wenwen Fang, Tony Yang, Guang-Hao Chen, Zhili He e Shanquan Wang. "Microbial sulfur metabolism and environmental implications". Science of The Total Environment 778 (julho de 2021): 146085. http://dx.doi.org/10.1016/j.scitotenv.2021.146085.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Amend, J. P., C. Saltikov, G. S. Lu e J. Hernandez. "Microbial Arsenic Metabolism and Reaction Energetics". Reviews in Mineralogy and Geochemistry 79, n.º 1 (1 de janeiro de 2014): 391–433. http://dx.doi.org/10.2138/rmg.2014.79.7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Sun, Jing, Michaela A. Mausz, Yin Chen e Stephen J. Giovannoni. "Microbial trimethylamine metabolism in marine environments". Environmental Microbiology 21, n.º 2 (3 de dezembro de 2018): 513–20. http://dx.doi.org/10.1111/1462-2920.14461.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia