Literatura científica selecionada sobre o tema "Microbial metabolism"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Microbial metabolism".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Microbial metabolism"
VINOPAL, R. T. "Microbial Metabolism". Science 239, n.º 4839 (29 de janeiro de 1988): 513.2–514. http://dx.doi.org/10.1126/science.239.4839.513.
Texto completo da fonteDowns, Diana M. "Understanding Microbial Metabolism". Annual Review of Microbiology 60, n.º 1 (outubro de 2006): 533–59. http://dx.doi.org/10.1146/annurev.micro.60.080805.142308.
Texto completo da fonteARNAUD, CELIA. "VIEWING MICROBIAL METABOLISM". Chemical & Engineering News 85, n.º 38 (17 de setembro de 2007): 11. http://dx.doi.org/10.1021/cen-v085n038.p011.
Texto completo da fonteWackett, Lawrence P. "Microbial metabolism prediction". Environmental Microbiology Reports 2, n.º 1 (8 de fevereiro de 2010): 217–18. http://dx.doi.org/10.1111/j.1758-2229.2010.00144.x.
Texto completo da fonteHahn-Hägerdal, Bärbel, e Neville Pamment. "Microbial Pentose Metabolism". Applied Biochemistry and Biotechnology 116, n.º 1-3 (2004): 1207–10. http://dx.doi.org/10.1385/abab:116:1-3:1207.
Texto completo da fonteWackett, Lawrence P. "Microbial community metabolism". Environmental Microbiology Reports 5, n.º 2 (5 de março de 2013): 333–34. http://dx.doi.org/10.1111/1758-2229.12041.
Texto completo da fonteWackett, Lawrence P. "Microbial community metabolism". Environmental Microbiology Reports 15, n.º 3 (5 de maio de 2023): 240–41. http://dx.doi.org/10.1111/1758-2229.13161.
Texto completo da fonteRajini, K. S., P. Aparna, Ch Sasikala e Ch V. Ramana. "Microbial metabolism of pyrazines". Critical Reviews in Microbiology 37, n.º 2 (11 de abril de 2011): 99–112. http://dx.doi.org/10.3109/1040841x.2010.512267.
Texto completo da fonteChubukov, Victor, Luca Gerosa, Karl Kochanowski e Uwe Sauer. "Coordination of microbial metabolism". Nature Reviews Microbiology 12, n.º 5 (24 de março de 2014): 327–40. http://dx.doi.org/10.1038/nrmicro3238.
Texto completo da fonteAsh, Caroline. "Microbial entrainment of metabolism". Science 365, n.º 6460 (26 de setembro de 2019): 1414.10–1416. http://dx.doi.org/10.1126/science.365.6460.1414-j.
Texto completo da fonteTeses / dissertações sobre o assunto "Microbial metabolism"
Burgess, Mary Catherine. "Insights into microbial metabolism". Thesis, Montana State University, 2012. http://etd.lib.montana.edu/etd/2012/burgess/BurgessMC0512.pdf.
Texto completo da fontePatterson, Andrea Jennifer. "Microbial metabolism of organophosphonates". Thesis, University of Ulster, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.232856.
Texto completo da fonteLister, Diane Lorraine. "The microbial metabolism of cocaine". Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390042.
Texto completo da fonteGriffiths, David A. "Microbial mimicry of mammalian drug metabolism". Thesis, Cranfield University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385132.
Texto completo da fonteHansman, Roberta Lynn. "Microbial metabolism in the deep ocean". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3324933.
Texto completo da fonteTitle from first page of PDF file (viewed November 14, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Ohshiro, Takashi. "MICROBIAL SULFUR METABOLISM OF HETEROCYCLIC SULFUR COMPOUNDS". Kyoto University, 1996. http://hdl.handle.net/2433/78073.
Texto completo da fonteChandrasekaran, Appavu. "Microbial and human metabolism of cardiac glycosides /". The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487265555441466.
Texto completo da fontePires, Aline Mara Barbosa. "Estudos metabolicos para otimização de condições nutricionais e de cultivo para produção microbiana de acido hialuronico". [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267027.
Texto completo da fonteTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-14T16:51:23Z (GMT). No. of bitstreams: 1 Pires_AlineMaraBarbosa_D.pdf: 5667585 bytes, checksum: 99be814ed0f4b52809cad017f91235eb (MD5) Previous issue date: 2009
Resumo: Neste trabalho, estudou-se a otimização da produção de ácido hialurônico (HA) por cultivo de Streptococcus zooepidemicus em batelada, com base nas alterações metabólicas ao longo do cultivo. Ás condições ambientais estudadas foram a concentração inicial de glicose, controle do pH, íons minerais e fonte de nitrogênio orgânico. Nos cultivos em frascos, a concentração inicial de glicose não alterou nem o crescimento celular nem a produção de HA. Entretanto, no cultivo em biorreator sem o controle do pH, ambos foram fortemente dependentes da concentração inicial de glicose, com maior produção de HA (1,21 g.L-1) no cultivo realizado em meio com 25 g.L-1 glicose. Tal condição nutricional foi a única que apresentou maior conversão de glicose em HA (YHA/S) do que conversão de glicose em massa celular (YX/S). O controle do pH ao longo do cultivo com 25 g.L-1 glicose resultou em maior produtividade de células (0,21 g.L-1.h-1) e de HA (0,10 g.L-1.h-1). apesar dos menores rendimentos em relação à glicose. A combinação desses resultados relaciona o maior direcionamento da fonte de carbono para HA do que para células a uma resposta do microrganismo ao stress ácido ocorrido no cultivo sem controle do pH. Uma análise da distribuição dos fluxos metabólicos nas condições ambientais estudadas demonstrou que as alterações na via de produção de HA foram mais relacionadas à distribuição dos fluxos para os açúcares precursores da síntese do polímero que à disponibilidade de energia (ATP) ou potencial redutor (NADH/NAD+) das células. A total suplementação do meio de cultura com íons minerais (K+, Mg++, Na+, Fe++, Ca++, Mn++, Zn++ e Cu++) foi benéfica para o crescimento celular, porém não alterou a produção de HA de forma significativa. O estudo demonstrou ainda que a qualidade do polímero produzido pode ser modulada pela suplementação do meio com íons minerais. As propriedades reológicas do HA com baixo teor de proteína (0.44 g.g-1) e massa molar média de 4.0 x 106 Da demonstraram elevada densidade de emaranhamento das cadeias devido à alta dependência do módulo elástico com a concentração e desvios da viscosidade complexa com relação à regra de Cox-Merz. O estudo de meios alternativos contendo derivados agroindustriais demonstrou maiores concentrações de HA em meios contendo extrato de levedura como fonte de nitrogênio. Este conjunto de resultados contribui para a otimização da produção de HA, assim como para um melhor entendimento do metabolismo do Streptococcus zooepidemicus.
Abstract: In this work, h was studied the optimization of HA production by hatch culture of Streptococcus zooepidemicus, with focus on the metabolic changes along cultivation. The environmental conditions studied were the initial glucose concentration, pH control, mineral ions and organic nitrogen source. In flask cultivations, the initial glucose concentration had no influence on the amounts of either the biomass or the MA produced. However, in bioreactor cultivations, at non-controlled pH. both were strongly dependent on the initial glucose concentration. The highest HA concentration (1.21 g.L-1) was obtained from 25 g.L-1 glucose, which was the only cultivation where the conversion of glucose to HA (YHA/S) was higher than the one of glucose to biomass (YX/S). Not only did the pH control along cultivation result in higher cell productivity (0.21 g.L-1.h-1), but also in the HA productivity (0.10 g.L-1.h-1), However, the HA and cell yields from glucose were lower. The combination of these results relates the higher direction of the carbon source to the HA synthesis at the expenses of the cell growth to a microbial response to the acid stress observed in non-controlled pH. An analysis of the metabolic flux distribution in the environmental conditions studied shows that the changes in the HA production pathway were more related to die distributions of duxes 10 the precursors of HA synthesis than to the energy availability (ATP) or redox slate (NADH/NAD+) of the cells. The total supplementation of the culture medium with ions was beneficial to die cell growth. However, if did not have any influence on the HA production. Moreover, the results showed that the HA quality may be modulated through the mineral ion supplementation. The rheological properties of HA with low protein content (0.44 g.g-1) and average molecular weight of 4.0 x 106 Da showed the high entanglements density of the HA chains due to the high storage modulus concentration dependence as well as to the complex viscosity deviations with respect to the Cox - Merz rule. Alternative media containing agricultural resources derivates were studied. The higher HA concentrations were produced in media whose organic nitrogen source was yeast extract. This set of results contributes not only to the optimization of the HA production, but also to a better understanding of the Streptococcus zooepidemicus metabolism.
Doutorado
Desenvolvimento de Processos Biotecnologicos
Doutor em Engenharia Química
Johnson, Winifred M. Ph D. Massachusetts Institute of Technology. "Linking microbial metabolism and organic matter cycling through metabolite distributions in the ocean". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/108909.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references.
Key players in the marine carbon cycle are the ocean-dwelling microbes that fix, remineralize, and transform organic matter. Many of the small organic molecules in the marine carbon pool have not been well characterized and their roles in microbial physiology, ecological interactions, and carbon cycling remain largely unknown. In this dissertation metabolomics techniques were developed and used to profile and quantify a suite of metabolites in the field and in laboratory experiments. Experiments were run to study the way a specific metabolite can influence microbial metabolite output and potentially processing of organic matter. Specifically, the metabolic response of the heterotrophic marine bacterium, Ruegeria pomeroyi, to the algal metabolite dimethylsulfoniopropionate (DMSP) was analyzed using targeted and untargeted metabolomics. The manner in which DMSP causes R. pomeroyi to modify its biochemical pathways suggests anticipation by R. pomeroyi of phytoplankton-derived nutrients and higher microbial density. Targeted metabolomics was used to characterize the latitudinal and vertical distributions of particulate and dissolved metabolites in samples gathered along a transect in the Western Atlantic Ocean. The assembled dataset indicates that, while many metabolite distributions co-vary with biomass abundance, other metabolites show distributions that suggest abiotic, species specific, or metabolic controls on their variability. On sinking particles in the South Atlantic portion of the transect, metabolites possibly derived from degradation of organic matter increase and phytoplankton-derived metabolites decrease. This work highlights the role DMSP plays in the metabolic response of a bacterium to the environment and reveals unexpected ways metabolite abundances vary between ocean regions and are transformed on sinking particles. Further metabolomics studies of the global distributions and interactions of marine biomolecules promise to provide new insights into microbial processes and metabolite cycling.
by Winifred M. Johnson.
Ph. D.
Newbold, Charles James. "Microbial metabolism of lactic acid in the rumen". Thesis, University of Glasgow, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235529.
Texto completo da fonteLivros sobre o assunto "Microbial metabolism"
Dahl, Christiane, e Cornelius G. Friedrich, eds. Microbial Sulfur Metabolism. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1.
Texto completo da fonteChristiane, Dahl, e Friedrich Cornelius G, eds. Microbial sulfur metabolism. Berlin: Springer, 2008.
Encontre o texto completo da fonteSpormann, Alfred M. Principles of Microbial Metabolism and Metabolic Ecology. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28218-8.
Texto completo da fonteCaldwell, Daniel R. Microbial physiology and metabolism. 2a ed. Belmont, Calif: Star, 1999.
Encontre o texto completo da fontePatterson, Andrea Jennifer. Microbial metabolism of organophosphonates. [S.l: The Author], 2001.
Encontre o texto completo da fonteK, Poole Robert, Dow Crawford S e Society for General Microbiology. Cell Biology Group., eds. Microbial gas metabolism: Mechanistic, metabolic, and biotechnological aspects. London: Published for the Society for General Microbiology by Academic Press, 1985.
Encontre o texto completo da fonteStolz, John F., e Ronald S. Oremland, eds. Microbial Metal and Metalloid Metabolism. Washington, DC, USA: ASM Press, 2011. http://dx.doi.org/10.1128/9781555817190.
Texto completo da fonteWinkelmann, Günther, e Carl J. Carrano. Transition Metals in Microbial Metabolism. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003211129.
Texto completo da fonteArora, Pankaj Kumar, ed. Microbial Metabolism of Xenobiotic Compounds. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7462-3.
Texto completo da fonteGünther, Winkelmann, e Carrano Carl J, eds. Transition metals in microbial metabolism. Amsterdam: Harwood Academic Publishers, 1997.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Microbial metabolism"
Spormann, Alfred M. "Microbial Energetics". In Principles of Microbial Metabolism and Metabolic Ecology, 35–57. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28218-8_3.
Texto completo da fonteSpormann, Alfred M. "Microbial Kinetics". In Principles of Microbial Metabolism and Metabolic Ecology, 73–97. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28218-8_5.
Texto completo da fonteHahn-Hägerdal, Bärbel, e Neville Pamment. "Microbial Pentose Metabolism". In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO, 1207–9. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-837-3_97.
Texto completo da fonteHausinger, Robert P. "Microbial Nickel Metabolism". In Biochemistry of Nickel, 181–201. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4757-9435-9_7.
Texto completo da fonteTiquia-Arashiro, Sonia M. "Microbial CO Metabolism". In Thermophilic Carboxydotrophs and their Applications in Biotechnology, 5–9. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11873-4_2.
Texto completo da fonteWall, Judy D., Adam P. Arkin, Nurgul C. Balci e Barbara Rapp-Giles. "Genetics and Genomics of Sulfate Respiration in Desulfovibrio". In Microbial Sulfur Metabolism, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1_1.
Texto completo da fonteChan, Leong-Keat, Rachael Morgan-Kiss e Thomas E. Hanson. "Sulfur Oxidation in Chlorobium tepidum (syn. Chlorobaculum tepidum): Genetic and Proteomic Analyses". In Microbial Sulfur Metabolism, 117–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1_10.
Texto completo da fonteStout, Jan, Lina De Smet, Bjorn Vergauwen, Savvas Savvides e Jozef Van Beeumen. "Structural Insights into Component SoxY of the Thiosulfate-Oxidizing Multienzyme System of Chlorobaculum thiosulfatiphilum". In Microbial Sulfur Metabolism, 127–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1_11.
Texto completo da fonteFriedrich, Cornelius G., Armin Quentmeier, Frank Bardischewsky, Dagmar Rother, Grazyna Orawski, Petra Hellwig e Jürg Fischer. "Redox Control of Chemotrophic Sulfur Oxidation of Paracoccus pantotrophus". In Microbial Sulfur Metabolism, 139–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1_12.
Texto completo da fonteKappler, Ulrike. "Bacterial Sulfite-Oxidizing Enzymes – Enzymes for Chemolithotrophs Only?" In Microbial Sulfur Metabolism, 151–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1_13.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Microbial metabolism"
Khanna, Namrata, Tanushri Chatterji, Suruchi Singh e Poonam Chaturvedi. "Microbial metabolism in bioremediation: A review". In THE FOURTH SCIENTIFIC CONFERENCE FOR ELECTRICAL ENGINEERING TECHNIQUES RESEARCH (EETR2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0163146.
Texto completo da fontePoulain, Alexandre, Daniel Gregoire, Noemie Lavoie e Benjamin Stenzler. "Mitigating Hg Pollution by Harnessing Anaerobic Microbial Metabolism". In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2110.
Texto completo da fonteBrodie, E., P. Sorensen, U. Karaoz, D. Chadwick, N. Falco, N. Bouskill, H. Wainwright et al. "Remote Sensing of Microbial Metabolism from Genomes to Ecosystems". In NSG2021 27th European Meeting of Environmental and Engineering Geophysics. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202120225.
Texto completo da fonteRyan-Baker, M., Tuan Vo-Dinh, Guy D. Griffin, Gordon H. Miller, Jean P. Alarie, Robert S. Burlage, A. V. Palumbo, Dennis C. White e S. Herbes. "Optical monitor for microbial metabolism for hazardous waste application". In OE/LASE '92, editado por Tuan Vo-Dinh. SPIE, 1992. http://dx.doi.org/10.1117/12.59339.
Texto completo da fonteLuo, Tianqi, Daniel R. Bond e Joseph J. Talghader. "Photoresponse of Diode-Biased Microelectrodes for Enhanced Microbial Metabolism". In 2023 International Conference on Optical MEMS and Nanophotonics (OMN) and SBFoton International Optics and Photonics Conference (SBFoton IOPC). IEEE, 2023. http://dx.doi.org/10.1109/omn/sbfotoniopc58971.2023.10230982.
Texto completo da fonteGaskins, H. Rex. "Abstract SS01-02: Microbial sulfur metabolism and colorectal cancer risk". In Abstracts: Sixth AACR Conference: The Science of Cancer Health Disparities; December 6–9, 2013; Atlanta, GA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7755.disp13-ss01-02.
Texto completo da fonteSiddique, Tariq, e Julia Foght. "Methane Emissions from Oil Sand Tailings by Microbial Metabolism of Hydrocarbons". In Environmental Management and Engineering / Unconventional Oil. Calgary,AB,Canada: ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.731-027.
Texto completo da fonteHubert, C., M. Nemati, G. Voordouw e G. E. Jenneman. "Biogenic Sulfide Production in Continuous Systems: Containment Strategies Targeting Microbial Metabolism". In Canadian International Petroleum Conference. Petroleum Society of Canada, 2002. http://dx.doi.org/10.2118/2002-114-ea.
Texto completo da fonteGohier, C., e L. Drouet. "Reducing crude protein in diet by stimulating ruminal microbial growth with essential oils". In 6th EAAP International Symposium on Energy and Protein Metabolism and Nutrition. The Netherlands: Wageningen Academic Publishers, 2019. http://dx.doi.org/10.3920/978-90-8686-891-9_42.
Texto completo da fonteUdegbunam, E. O., J. P. Adkins, R. M. Knapp, M. J. McInerney e R. S. Tanner. "Assessing the Effects of Microbial Metabolism and Metabolites on Reservoir Pore Structure". In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1991. http://dx.doi.org/10.2118/22846-ms.
Texto completo da fonteRelatórios de organizações sobre o assunto "Microbial metabolism"
McKinlay, James B. Metabolism and Evolution of a Biofuel-Producing Microbial Coculture. Office of Scientific and Technical Information (OSTI), junho de 2018. http://dx.doi.org/10.2172/1459596.
Texto completo da fonteLovley, Derek R. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques. Office of Scientific and Technical Information (OSTI), novembro de 2012. http://dx.doi.org/10.2172/1097098.
Texto completo da fonteLovley, Derek R. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques. Office of Scientific and Technical Information (OSTI), novembro de 2012. http://dx.doi.org/10.2172/1055767.
Texto completo da fonteSarvaiya, Niral, e Vijay Kothari. Audible sound in form of music can influence microbial growth, metabolism, and antibiotic susceptibility. Cold Spring Harbor Laboratory, março de 2016. http://dx.doi.org/10.1101/044776.
Texto completo da fonteKonisky, J. International Symposium on Topics in Microbial Diversity, Metabolism, and Physiology. Final report, May 22--23, 1992. Office of Scientific and Technical Information (OSTI), julho de 1993. http://dx.doi.org/10.2172/10158099.
Texto completo da fonteHofmockel, Kirsten. Microbial drivers of global change at the aggregate scale: linking genomic function to carbon metabolism and warming. Office of Scientific and Technical Information (OSTI), junho de 2019. http://dx.doi.org/10.2172/1524429.
Texto completo da fonteDroby, S., J. L. Norelli, M. E. Wisniewski, S. Freilich, A. Faigenboim e C. Dardick. Microbial networks on harvested apples and the design of antagonistic consortia to control postharvest pathogens. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134164.bard.
Texto completo da fonteMinz, Dror, Stefan J. Green, Noa Sela, Yitzhak Hadar, Janet Jansson e Steven Lindow. Soil and rhizosphere microbiome response to treated waste water irrigation. United States Department of Agriculture, janeiro de 2013. http://dx.doi.org/10.32747/2013.7598153.bard.
Texto completo da fonteTURICK, CHARLES. Microbial Metabolite Production for Accelerated Metal and Radionuclide Bioremediation (Microbial Metabolite Production Report). Office of Scientific and Technical Information (OSTI), setembro de 2004. http://dx.doi.org/10.2172/835058.
Texto completo da fonteVarga, Gabriella A., Amichai Arieli, Lawrence D. Muller, Haim Tagari, Israel Bruckental e Yair Aharoni. Effect of Rumen Available Protein, Amimo Acids and Carbohydrates on Microbial Protein Synthesis, Amino Acid Flow and Performance of High Yielding Cows. United States Department of Agriculture, agosto de 1993. http://dx.doi.org/10.32747/1993.7568103.bard.
Texto completo da fonte