Literatura científica selecionada sobre o tema "Microbial inoculants"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Microbial inoculants".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Microbial inoculants"
Shen, Minchong, Jiangang Li, Yuanhua Dong, Zhengkun Zhang, Yu Zhao, Qiyun Li, Keke Dang, Junwei Peng e Hong Liu. "The Effects of Microbial Inoculants on Bacterial Communities of the Rhizosphere Soil of Maize". Agriculture 11, n.º 5 (25 de abril de 2021): 389. http://dx.doi.org/10.3390/agriculture11050389.
Texto completo da fonteLi, Chong, Zhaohui Jia, Shilin Ma, Xin Liu, Jinchi Zhang e Christoph Müller. "Plant and Native Microorganisms Amplify the Positive Effects of Microbial Inoculant". Microorganisms 11, n.º 3 (24 de fevereiro de 2023): 570. http://dx.doi.org/10.3390/microorganisms11030570.
Texto completo da fonteLiu, Yi-Ming, Fang Zheng, Zhao-Hui Liu, Hai-Bo Lan, Ye-Hong Cui, Tong-Guo Gao, Marja Roitto e Ai-Fang Wang. "Enhanced Root and Stem Growth and Physiological Changes in Pinus bungeana Zucc. Seedlings by Microbial Inoculant Application". Forests 13, n.º 11 (4 de novembro de 2022): 1836. http://dx.doi.org/10.3390/f13111836.
Texto completo da fonteBroschat, Timothy K., e Monica L. Elliott. "Effects of Fertilization and Microbial Inoculants Applied at Transplanting on the Growth of Mexican Fan Palm and Queen Palm". HortTechnology 19, n.º 2 (janeiro de 2009): 324–30. http://dx.doi.org/10.21273/hortsci.19.2.324.
Texto completo da fonteCalvo, Pamela, Dexter B. Watts, Joseph W. Kloepper e H. Allen Torbert. "The influence of microbial-based inoculants on N2O emissions from soil planted with corn (Zea maysL.) under greenhouse conditions with different nitrogen fertilizer regimens". Canadian Journal of Microbiology 62, n.º 12 (dezembro de 2016): 1041–56. http://dx.doi.org/10.1139/cjm-2016-0122.
Texto completo da fontePrischmann-Voldseth, Deirdre A., Tülin Özsisli, Laura Aldrich-Wolfe, Kirk Anderson e Marion O. Harris. "Microbial Inoculants Differentially Influence Plant Growth and Biomass Allocation in Wheat Attacked by Gall-Inducing Hessian Fly (Diptera: Cecidomyiidae)". Environmental Entomology 49, n.º 5 (29 de agosto de 2020): 1214–25. http://dx.doi.org/10.1093/ee/nvaa102.
Texto completo da fonteMa, Hua, Vyacheslav Shurigin, Dilfuza Jabborova, Jeane Aril dela Cruz, Thomas Edison dela Cruz, Stephan Wirth, Sonoko Dorothea Bellingrath-Kimura e Dilfuza Egamberdieva. "The Integrated Effect of Microbial Inoculants and Biochar Types on Soil Biological Properties, and Plant Growth of Lettuce (Lactuca sativa L.)". Plants 11, n.º 3 (3 de fevereiro de 2022): 423. http://dx.doi.org/10.3390/plants11030423.
Texto completo da fonteRaja, P., e V. P. Santhi. "Comparative study of microbial inoculants of cultivated and virgin soils of Nilgiri Biosphere for plant growth promotion". INTERNATIONAL JOURNAL OF AGRICULTURAL SCIENCES 17, n.º 2 (15 de junho de 2021): 293–98. http://dx.doi.org/10.15740/has/ijas/17.2/293-298.
Texto completo da fonteSharma, A. K., e P. N. Bhattacharyya. "Effect of Beneficial Microorganisms on Cowpea Productivity and Soil Health". Journal of Advance Research in Pharmacy & Biological Science (ISSN: 2208-2360) 2, n.º 5 (31 de maio de 2016): 15–21. http://dx.doi.org/10.53555/nnpbs.v2i5.702.
Texto completo da fonteAdesemoye, A. O., H. A. Torbert e J. W. Kloepper. "Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system". Canadian Journal of Microbiology 54, n.º 10 (outubro de 2008): 876–86. http://dx.doi.org/10.1139/w08-081.
Texto completo da fonteTeses / dissertações sobre o assunto "Microbial inoculants"
Carter, Jonathan Philip. "Population biology of Trichoderma spp. used as inoculants". Thesis, University of Reading, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329046.
Texto completo da fonteCepeda, Maria Veronica. "Effects of Microbial Inoculants on Biocontrol and Plant Growth Promotion". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1345239027.
Texto completo da fonteRogers, Stephen Lloyd. "The effect of phototrophic microbial inoculants on soil aggregate stability and soil fertility". Thesis, University of Kent, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305060.
Texto completo da fonteMeikle, Audrey. "Luminescence based monitoring of genetically modified microbial inoculants in the soil". Thesis, University of Aberdeen, 1992. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU065698.
Texto completo da fonteLevesley, Mark Howard. "Potential applications of Agrobacterium virulence gene promoters in plant-protecting microbial inoculants". Thesis, Durham University, 1994. http://etheses.dur.ac.uk/5508/.
Texto completo da fonteBradácová, Klára [Verfasser], e Günter [Akademischer Betreuer] Neumann. "Microbial consortia as inoculants for improvedcrop performance / Klára Bradácová ; Betreuer: Günter Neumann". Hohenheim : Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim, 2020. http://d-nb.info/1214709761/34.
Texto completo da fonteKantachote, Duangporn. "The use of microbial inoculants to enhance DDT degradation in contaminated soil". Title page, contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phk165.pdf.
Texto completo da fonteCadena, Cepeda Marleny Kloepper Joseph. "Assessing soil microbial populations and activity following the use of microbial inoculants effect on disease suppressiveness and soil health /". Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Fall/Theses/CADENA_MARLENY_3.pdf.
Texto completo da fonteGillis, Donald Patriq Bruce Gillis. "Assessment of a novel delivery system for microbial inoculants and the novel microbe Mitsuaria spp. H24L5A". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461312230.
Texto completo da fonteNelson, Jason Scott. "Organic and inorganic fertilization with and without microbial inoculants in peat-based substrate and hydroponic crop production". Thesis, Kansas State University, 2013. http://hdl.handle.net/2097/15574.
Texto completo da fonteDepartment of Horticulture, Forestry, and Recreation Resources
Kimberly A. Williams
Liquid organic fertilizers and microbial inoculants of beneficial microorganisms are garnering interest from commercial greenhouse growers who seek to produce crops more sustainably, but research about their efficacy is limited and results are conflicting. This research focused on comparing the effect of microbial inoculant addition in two soilless crop production systems under organic versus conventional fertilization. Two experiments were conducted with impatiens (Impatiens walleriana) in a peat-based substrate and four experiments were conducted with butterhead lettuce (Latuca sativa) in nutrient film technique (NFT) hydroponics. In the impatiens studies, nitrogen, phosphorus, and potassium were incorporated pre-plant equally across treatments using OsmocoteTM, or organic fertilizers Bloodmeal or Feathermeal. An inorganic constant liquid feed (CLF) was also evaluated. Microbial inoculants that contained a variety of beneficial species, including Bacillus spp. and Trichoderma spp. were drench-applied at the beginning of the cropping cycle. Impatiens growth was comparable between the nutrient regimens in one of the studies. CO2 respiration was measured on substrate samples. At a 5X application rate, inoculants contributed to subtle increases in plant growth in organic treatments, but microbial activity was unaffected as measured by CO2 respiration. However, organic nutrient sources contributed to higher CO2 respiration at day 7 of the production cycle compared to inorganic nutrient sources. The hydroponic trials consisted of inorganic and organic nutrient regimens, evaluated with and without microbial inoculant addition. Nutrient analyses and CO2 respiration of the nutrient solutions were collected. Use of inoculants resulted in increased plant growth when used in organic nutrient regimens in some trials. Plant dry weight and CO2 respiration in the inorganic nutrient regimens were increased in certain instances with inoculant addition. No differences in mycorrhizal root colonization were observed in either nutrient regimen with mycorrhizal inoculant addition. Petiole NO3-N concentration of lettuce plants grown with inorganic nutrient sources was greater than that of plants in organic regimens. Organic fertilizers and inoculant products resulted in comparable or positive impacts on plant growth and food crop quality in some treatment scenarios in these studies. The specific circumstances of crop production systems dictate whether plant growth response may occur from inoculant incorporation.
Livros sobre o assunto "Microbial inoculants"
Singh, Dhananjaya Pratap, Harikesh Bahadur Singh e Ratna Prabha, eds. Microbial Inoculants in Sustainable Agricultural Productivity. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2644-4.
Texto completo da fonteSingh, Dhananjaya Pratap, Harikesh Bahadur Singh e Ratna Prabha, eds. Microbial Inoculants in Sustainable Agricultural Productivity. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2647-5.
Texto completo da fonteAbud, Yazmín Carreón. Hongos micorrízicos arbusculares: Conservación y bioinoculantes. Morelia, Michoacán, México: SEP, Secretaría de Educación Pública, Estados Unidos Mexicanos, 2013.
Encontre o texto completo da fonteBrown, Michael R. W. 1931- e Gilbert Peter, eds. Microbiological quality assurance: A guide towards relevance and reproducibility of inocula. Boca Raton, Fl: CRC Press, 1995.
Encontre o texto completo da fonteMultipurpose trees and shrubs: Sources of seeds and inoculants. Nairobi, Kenya: International Council for Research in Agroforestry, 1991.
Encontre o texto completo da fonteR, Kindt, Von Carlowitz P e International Centre for Research in Agroforestry., eds. Tree seed suppliers directory: Sources of seeds and microsymbionts. Nairobi, Kenya: International Centre for Research in Agroforestry, 1997.
Encontre o texto completo da fonteBacterial-fungal interactions highlighted using microbiomics: Potential application for plant growth enhancement. Uppsala: Swedish University of Agricultural Sciences, 2005.
Encontre o texto completo da fonteMajor, David William. A survey of microbial inoculants for bioremediation and identification of information requirements suitable for the feasibility evaluation and validation of bioremediation. [Toronto]: Ontario Environment, 1992.
Encontre o texto completo da fonteKumar, Ajay, Vijay Kumar Sharma, Vipin Kumar Singh, Shobhika Parmar e Michel R. Zambrano Passarini. Microbial Inoculants: Recent Progress and Applications. Elsevier Science & Technology Books, 2022.
Encontre o texto completo da fonteMicrobial Inoculants: Recent Progress and Applications. Elsevier Science & Technology, 2022.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Microbial inoculants"
Siddiqui, Zaki A., e Ryota Kataoka. "Mycorrhizal Inoculants: Progress in Inoculant Production Technology". In Microbes and Microbial Technology, 489–506. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7931-5_18.
Texto completo da fonteTrivedi, Shubha, Mukesh Srivastava, Sonika Pandey e Sanat Kumar Dwibedi. "Bio-Inoculants". In Microbial Based Land Restoration Handbook, Volume 2, 273–88. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003147077-13.
Texto completo da fonteSuyal, Deep Chandra, Ravindra Soni, Santosh Sai e Reeta Goel. "Microbial Inoculants as Biofertilizer". In Microbial Inoculants in Sustainable Agricultural Productivity, 311–18. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2647-5_18.
Texto completo da fontePathak, D. V., e Mukesh Kumar. "Microbial Inoculants as Biofertilizers and Biopesticides". In Microbial Inoculants in Sustainable Agricultural Productivity, 197–209. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2647-5_11.
Texto completo da fontePatil, C. R., e A. R. Alagawadi. "Microbial Inoculants for Sustainable Legume Production". In Microbes for Legume Improvement, 515–36. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-99753-6_21.
Texto completo da fonteSingh, Dhananjaya Pratap, Ratna Prabha e Vijai Kumar Gupta. "Microbial Inoculants for Sustainable Crop Management". In Microbial Interventions in Agriculture and Environment, 1–35. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8383-0_1.
Texto completo da fonteMehta, C. M., Byiringiro Emmanuel, Amit Kesarwani, Kanak Sirari e Anil K. Sharma. "Nutrient Management Strategies Based on Microbial Functions". In Microbial Inoculants in Sustainable Agricultural Productivity, 143–63. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2644-4_10.
Texto completo da fonteSathya, Arumugam, Rajendran Vijayabharathi e Subramaniam Gopalakrishnan. "Soil Microbes: The Invisible Managers of Soil Fertility". In Microbial Inoculants in Sustainable Agricultural Productivity, 1–16. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2644-4_1.
Texto completo da fonteKaur, Chandandeep, G. Selvakumar e A. N. Ganeshamurthy. "Organic Acids in the Rhizosphere: Their Role in Phosphate Dissolution". In Microbial Inoculants in Sustainable Agricultural Productivity, 165–77. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2644-4_11.
Texto completo da fonteSahu, P. K., e G. P. Brahmaprakash. "Formulations of Biofertilizers – Approaches and Advances". In Microbial Inoculants in Sustainable Agricultural Productivity, 179–98. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2644-4_12.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Microbial inoculants"
Cheverdin, A. Y., e Y. I. Cheverdin. "The influence of microbial preparations on the dynamics of growth of the vegetative mass of winter wheat". In Agrobiotechnology-2021. Publishing house of RGAU - MSHA, 2021. http://dx.doi.org/10.26897/978-5-9675-1855-3-2021-60.
Texto completo da fonteJin-Chao, Wu, Huang Guang-Rong, Yu Miao e Tan Yong-Hua. "Acute oral toxicity and Ames-mutagenicity of domestic waste decomposing microbial inoculants WU-1". In 2011 International Conference on Human Health and Biomedical Engineering (HHBE). IEEE, 2011. http://dx.doi.org/10.1109/hhbe.2011.6028958.
Texto completo da fonteKamaruddin, M. A., F. A. Norashiddin, A. F. M. Idrus, M. H. Zawawi e R. Alrozi. "A study on the effects of different microbial inoculants on the decomposition of organic waste by using semi passive aerated reactor". In GREEN DESIGN AND MANUFACTURE: ADVANCED AND EMERGING APPLICATIONS: Proceedings of the 4th International Conference on Green Design and Manufacture 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5066840.
Texto completo da fonteNarasimhaiah, Ashwini, Pramod Kumar, Ajay Kumar Joshi, Naveen Chand Sharma, Rajesh Kaushal, Nivedita Sharma, Nisha Sharma e Simran Saini. "The Stimulatory Effects of Humic Substances and Microbial Inoculants on Cropping Performance of Guava (Psidium guajava L.) cv. Lalit in Meadow Orcharding System". In IECHo 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/iecho2022-12503.
Texto completo da fonteMikhailouskaya, N. A., D. V. Voitka, E. K. Yuzefovich e T. B. Barashenko. "Effect of three-component microbial inoculant on winter rye and spring barley yields". In РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ РЕСУРСОВ В АГРОЦЕНОЗАХ. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-15.05.2020.17.
Texto completo da fonteMikhailouskaya, N. A., D. V. Voitka e E. K. Yuzefovitch. "Microbial composition with the properties of plant growth promoter, biofertilizer and biological fungicide". In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.170.
Texto completo da fonteSouza, Khaoanny De, Leandra Karpinski e Patricia Dayane Carvalho Schaker. "BIOPROSPECÇÃO DE FUNGOS ENDOFÍTICOS DE KALANCHOE DAIGREMONTIANA COM ATIVIDADE ANTIOXIDANTE". In II Congresso Brasileiro de Biotecnologia On-line. Revista Multidisciplinar de Educação e Meio Ambiente, 2022. http://dx.doi.org/10.51189/conbiotec/21.
Texto completo da fonteDa Silva, Maria Carolina Raiol, Daniel Vitor Da Silva Monteiro, Daniele De Lima Dos Santos, Ediberto Nunes e Jaqueline Salim Brabo. "MECANISMO DE DEFESA DO SISTEMA IMUNOLÓGICO CONTRA ÀS SUPERBACTÉRIAS." In I Congresso Brasileiro de Imunologia On-line. Revista Multidisciplinar em Saúde, 2021. http://dx.doi.org/10.51161/rems/945.
Texto completo da fonteRelatórios de organizações sobre o assunto "Microbial inoculants"
Weinberg, Zwi G., Adegbola Adesogan, Itzhak Mizrahi, Shlomo Sela, Kwnag Jeong e Diwakar Vyas. effect of selected lactic acid bacteria on the microbial composition and on the survival of pathogens in the rumen in context with their probiotic effects on ruminants. United States Department of Agriculture, janeiro de 2014. http://dx.doi.org/10.32747/2014.7598162.bard.
Texto completo da fonteCrowley, David E., Dror Minz e Yitzhak Hadar. Shaping Plant Beneficial Rhizosphere Communities. United States Department of Agriculture, julho de 2013. http://dx.doi.org/10.32747/2013.7594387.bard.
Texto completo da fonteKnotek-Smith, Heather, e Catherine Thomas. Microbial dynamics of a fluidized bed bioreactor treating perchlorate in groundwater. Engineer Research and Development Center (U.S.), setembro de 2022. http://dx.doi.org/10.21079/11681/45403.
Texto completo da fonte