Artigos de revistas sobre o tema "Methylerythritol phosphate pathway (MEP pathway)"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Methylerythritol phosphate pathway (MEP pathway)".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Banerjee, A., e T. D. Sharkey. "Methylerythritol 4-phosphate (MEP) pathway metabolic regulation". Nat. Prod. Rep. 31, n.º 8 (2014): 1043–55. http://dx.doi.org/10.1039/c3np70124g.
Texto completo da fonteTesta, Charles A., e L. Jeffrey Johnson. "A Whole-Cell Phenotypic Screening Platform for Identifying Methylerythritol Phosphate Pathway-Selective Inhibitors as Novel Antibacterial Agents". Antimicrobial Agents and Chemotherapy 56, n.º 9 (9 de julho de 2012): 4906–13. http://dx.doi.org/10.1128/aac.00987-12.
Texto completo da fonteCassera, María B., Fabio C. Gozzo, Fabio L. D'Alexandri, Emilio F. Merino, Hernando A. del Portillo, Valnice J. Peres, Igor C. Almeida et al. "The Methylerythritol Phosphate Pathway Is Functionally Active in All Intraerythrocytic Stages ofPlasmodium falciparum". Journal of Biological Chemistry 279, n.º 50 (27 de setembro de 2004): 51749–59. http://dx.doi.org/10.1074/jbc.m408360200.
Texto completo da fonteChen, Lijia, Hui Tong, Mingxuan Wang, Jianhua Zhu, Jiachen Zi, Liyan Song e Rongmin Yu. "Effect of Enzyme Inhibitors on Terpene Trilactones Biosynthesis and Gene Expression Profiling in Ginkgo biloba Cultured Cells". Natural Product Communications 10, n.º 12 (dezembro de 2015): 1934578X1501001. http://dx.doi.org/10.1177/1934578x1501001205.
Texto completo da fonteZeidler, J., J. Schwender, C. Mueller e H. K. Lichtenthaler. "The non-mevalonate isoprenoid biosynthesis of plants as a test system for drugs against malaria and pathogenic bacteria". Biochemical Society Transactions 28, n.º 6 (1 de dezembro de 2000): 796–98. http://dx.doi.org/10.1042/bst0280796.
Texto completo da fonteKadian, Kavita, Yash Gupta, Harsh Vardhan Singh, Prakasha Kempaiah e Manmeet Rawat. "Apicoplast Metabolism: Parasite’s Achilles’ Heel". Current Topics in Medicinal Chemistry 18, n.º 22 (10 de janeiro de 2019): 1987–97. http://dx.doi.org/10.2174/1568026619666181130134742.
Texto completo da fonteCornish, Rita M., John R. Roth e C. Dale Poulter. "Lethal Mutations in the Isoprenoid Pathway of Salmonella enterica". Journal of Bacteriology 188, n.º 4 (15 de fevereiro de 2006): 1444–50. http://dx.doi.org/10.1128/jb.188.4.1444-1450.2006.
Texto completo da fontePérez-Gil, Jordi, e Manuel Rodríguez-Concepción. "Metabolic plasticity for isoprenoid biosynthesis in bacteria". Biochemical Journal 452, n.º 1 (25 de abril de 2013): 19–25. http://dx.doi.org/10.1042/bj20121899.
Texto completo da fonteBanerjee, Aparajita, Yan Wu, Rahul Banerjee, Yue Li, Honggao Yan e Thomas D. Sharkey. "Feedback Inhibition of Deoxy-d-xylulose-5-phosphate Synthase Regulates the Methylerythritol 4-Phosphate Pathway". Journal of Biological Chemistry 288, n.º 23 (23 de abril de 2013): 16926–36. http://dx.doi.org/10.1074/jbc.m113.464636.
Texto completo da fonteKilliny, Nabil. "Silencing Phytoene Desaturase Causes Alteration in Monoterpene Volatiles Belonging to the Methylerythritol Phosphate Pathway". Plants 11, n.º 3 (20 de janeiro de 2022): 276. http://dx.doi.org/10.3390/plants11030276.
Texto completo da fonteChoi, Seoung-Ryoung, e Prabagaran Narayanasamy. "Investigating Novel IspE Inhibitors of the MEP Pathway in Mycobacterium". Microorganisms 12, n.º 1 (21 de dezembro de 2023): 18. http://dx.doi.org/10.3390/microorganisms12010018.
Texto completo da fonteRohmer, M. "Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution". Pure and Applied Chemistry 75, n.º 2-3 (1 de janeiro de 2003): 375–88. http://dx.doi.org/10.1351/pac200375020375.
Texto completo da fonteGonzález-Cabanelas, Diego, Erica Perreca, Johann M. Rohwer, Axel Schmidt, Tobias Engl, Bettina Raguschke, Jonathan Gershenzon e Louwrance P. Wright. "Deoxyxylulose 5-Phosphate Synthase Does Not Play a Major Role in Regulating the Methylerythritol 4-Phosphate Pathway in Poplar". International Journal of Molecular Sciences 25, n.º 8 (10 de abril de 2024): 4181. http://dx.doi.org/10.3390/ijms25084181.
Texto completo da fonteZhao, Yaru, Jianming Yang, Bo Qin, Yonghao Li, Yuanzhang Sun, Sizheng Su e Mo Xian. "Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway". Applied Microbiology and Biotechnology 90, n.º 6 (6 de abril de 2011): 1915–22. http://dx.doi.org/10.1007/s00253-011-3199-1.
Texto completo da fonteHenry, Laura K., Michael Gutensohn, Suzanne T. Thomas, Joseph P. Noel e Natalia Dudareva. "Orthologs of the archaeal isopentenyl phosphate kinase regulate terpenoid production in plants". Proceedings of the National Academy of Sciences 112, n.º 32 (27 de julho de 2015): 10050–55. http://dx.doi.org/10.1073/pnas.1504798112.
Texto completo da fontePérez, Lucía, Rui Alves, Laura Perez-Fons, Alfonso Albacete, Gemma Farré, Erika Soto, Ester Vilaprinyó et al. "Multilevel interactions between native and ectopic isoprenoid pathways affect global metabolism in rice". Transgenic Research 31, n.º 2 (24 de fevereiro de 2022): 249–68. http://dx.doi.org/10.1007/s11248-022-00299-6.
Texto completo da fonteWang, Jin-Zheng, Yongxing Lei, Yanmei Xiao, Xiang He, Jiubo Liang, Jishan Jiang, Shangzhi Dong et al. "Uncovering the functional residues ofArabidopsisisoprenoid biosynthesis enzyme HDS". Proceedings of the National Academy of Sciences 117, n.º 1 (26 de dezembro de 2019): 355–61. http://dx.doi.org/10.1073/pnas.1916434117.
Texto completo da fonteRohmer, Michel. "Diversity in isoprene unit biosynthesis: The methylerythritol phosphate pathway in bacteria and plastids". Pure and Applied Chemistry 79, n.º 4 (1 de janeiro de 2007): 739–51. http://dx.doi.org/10.1351/pac200779040739.
Texto completo da fonteJin, Shi Kun, e Shou Jing Zhao. "Recent Advances in Study of Ginsenoside Biosynthetic Pathway in Panax ginseng". Advanced Materials Research 773 (setembro de 2013): 368–73. http://dx.doi.org/10.4028/www.scientific.net/amr.773.368.
Texto completo da fonteRoth, Jared H., e Valerie C. A. Ward. "Production of Astaxanthin Using CBFD1/HFBD1 from Adonis aestivalis and the Isopentenol Utilization Pathway in Escherichia coli". Bioengineering 10, n.º 9 (1 de setembro de 2023): 1033. http://dx.doi.org/10.3390/bioengineering10091033.
Texto completo da fonteNguyen, Anh Duc, Diep Ngoc Pham, Tin Hoang Trung Chau e Eun Yeol Lee. "Enhancing Sesquiterpenoid Production from Methane via Synergy of the Methylerythritol Phosphate Pathway and a Short-Cut Route to 1-Deoxy-D-xylulose 5-Phosphate in Methanotrophic Bacteria". Microorganisms 9, n.º 6 (7 de junho de 2021): 1236. http://dx.doi.org/10.3390/microorganisms9061236.
Texto completo da fonteGastaldo, Lipko, Motsch, Adam, Schaeffer e Rohmer. "Biosynthesis of Isoprene Units in Euphorbia lathyris Laticifers vs. Other Tissues: MVA and MEP Pathways, Compartmentation and Putative Endophytic Fungi Contribution". Molecules 24, n.º 23 (26 de novembro de 2019): 4322. http://dx.doi.org/10.3390/molecules24234322.
Texto completo da fonteMueller, C., J. Schwender, J. Zeidler e H. K. Lichtenthaler. "Properties and inhibition of the first two enzymes of the non-mevalonate pathway of isoprenoid biosynthesis". Biochemical Society Transactions 28, n.º 6 (1 de dezembro de 2000): 792–93. http://dx.doi.org/10.1042/bst0280792.
Texto completo da fonteRohmer, M. "The mevalonate-independent methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis, including carotenoids". Pure and Applied Chemistry 71, n.º 12 (1 de janeiro de 1999): 2279–84. http://dx.doi.org/10.1351/pac199971122279.
Texto completo da fontePierce, Phillip G., Brian E. Hartnett, Tosha M. Laughlin, Joy M. Blain, Stephen J. Mayclin, Madison J. Bolejack, Janette B. Myers et al. "Crystal structure and biophysical characterization of IspD from Burkholderia thailandensis and Mycobacterium paratuberculosis". Acta Crystallographica Section F Structural Biology Communications 80, n.º 2 (31 de janeiro de 2024): 43–51. http://dx.doi.org/10.1107/s2053230x24000621.
Texto completo da fonteNiu, Zhipeng, Shu Ye, Jiaojiao Liu, Mengyu Lyu, Lilan Xue, Muxiao Li, Congcong Lyu, Junlong Zhao e Bang Shen. "Two apicoplast dwelling glycolytic enzymes provide key substrates for metabolic pathways in the apicoplast and are critical for Toxoplasma growth". PLOS Pathogens 18, n.º 11 (30 de novembro de 2022): e1011009. http://dx.doi.org/10.1371/journal.ppat.1011009.
Texto completo da fonteKnak, Talea, Mona A. Abdullaziz, Stefan Höfmann, Leandro A. Alves Avelar, Saskia Klein, Matthew Martin, Markus Fischer, Nobutada Tanaka e Thomas Kurz. "Over 40 Years of Fosmidomycin Drug Research: A Comprehensive Review and Future Opportunities". Pharmaceuticals 15, n.º 12 (14 de dezembro de 2022): 1553. http://dx.doi.org/10.3390/ph15121553.
Texto completo da fonteVan Nguyen, Truong, So-Wun Kim, Cheol-Woo Min, Ravi Gupta, Gi-Hyun Lee, Jeong-Woo Jang, Divya Rathi et al. "Optimization of Protein Isolation and Label-Free Quantitative Proteomic Analysis in Four Different Tissues of Korean Ginseng". Plants 10, n.º 7 (9 de julho de 2021): 1409. http://dx.doi.org/10.3390/plants10071409.
Texto completo da fonteEoh, Hyungjin, Amanda C. Brown, Lori Buetow, William N. Hunter, Tanya Parish, Devinder Kaur, Patrick J. Brennan e Dean C. Crick. "Characterization of the Mycobacterium tuberculosis 4-Diphosphocytidyl-2-C-Methyl-d-Erythritol Synthase: Potential for Drug Development". Journal of Bacteriology 189, n.º 24 (5 de outubro de 2007): 8922–27. http://dx.doi.org/10.1128/jb.00925-07.
Texto completo da fonteHowe, Ruth, Megan Kelly, John Jimah, Dana Hodge e Audrey R. Odom. "Isoprenoid Biosynthesis Inhibition Disrupts Rab5 Localization and Food Vacuolar Integrity in Plasmodium falciparum". Eukaryotic Cell 12, n.º 2 (7 de dezembro de 2012): 215–23. http://dx.doi.org/10.1128/ec.00073-12.
Texto completo da fonteArmstrong, Christopher M., David J. Meyers, Leah S. Imlay, Caren Freel Meyers e Audrey R. Odom. "Resistance to the Antimicrobial Agent Fosmidomycin and an FR900098 Prodrug through Mutations in the Deoxyxylulose Phosphate Reductoisomerase Gene (dxr)". Antimicrobial Agents and Chemotherapy 59, n.º 9 (29 de junho de 2015): 5511–19. http://dx.doi.org/10.1128/aac.00602-15.
Texto completo da fonteHOEFFLER, Jean-François, Andréa HEMMERLIN, Catherine GROSDEMANGE-BILLIARD, Thomas J. BACH e Michel ROHMER. "Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate". Biochemical Journal 366, n.º 2 (1 de setembro de 2002): 573–83. http://dx.doi.org/10.1042/bj20020337.
Texto completo da fonteZhu, Jianhua, Pu Wang, Minghua Qian, Chuxin Liang, Jiachen Zi e Rongmin Yu. "Effect of Levopimaradiene on Terpene Trilactones Biosynthesis and Gene Expression Profiling in Ginkgo biloba Cells". Natural Product Communications 12, n.º 7 (julho de 2017): 1934578X1701200. http://dx.doi.org/10.1177/1934578x1701200701.
Texto completo da fonteHartmann, Michael, Andrea Hemmerlin, Elisabet Gas-Pascual, Esther Gerber, Denis Tritsch, Michel Rohmer e Thomas J. Bach. "The effect of MEP pathway and other inhibitors on the intracellular localization of a plasma membrane-targeted, isoprenylable GFP reporter protein in tobacco BY-2 cells". F1000Research 2 (12 de agosto de 2013): 170. http://dx.doi.org/10.12688/f1000research.2-170.v1.
Texto completo da fonteHartmann, Michael, Andrea Hemmerlin, Elisabet Gas-Pascual, Esther Gerber, Denis Tritsch, Michel Rohmer e Thomas J. Bach. "The effect of MEP pathway and other inhibitors on the intracellular localization of a plasma membrane-targeted, isoprenylable GFP reporter protein in tobacco BY-2 cells". F1000Research 2 (15 de novembro de 2013): 170. http://dx.doi.org/10.12688/f1000research.2-170.v2.
Texto completo da fonteLiu, Yu, Hui Zhang, Shivshankar Umashankar, Xu Liang, Hui Lee, Sanjay Swarup e Choon Ong. "Characterization of Plant Volatiles Reveals Distinct Metabolic Profiles and Pathways among 12 Brassicaceae Vegetables". Metabolites 8, n.º 4 (14 de dezembro de 2018): 94. http://dx.doi.org/10.3390/metabo8040094.
Texto completo da fonteZhu, Peihuang, Yu Chen, Fan Wu, Miaojing Meng e Kongshu Ji. "Expression and promoter analysis of MEP pathway enzyme-encoding genes in Pinus massoniana Lamb". PeerJ 10 (12 de abril de 2022): e13266. http://dx.doi.org/10.7717/peerj.13266.
Texto completo da fonteJezewski, Andrew J., Ann M. Guggisberg, Dana M. Hodge, Naomi Ghebremichael, Gavin Nicholas John, Lisa K. McLellan e Audrey Ragan Odom John. "GAPDH mediates drug resistance and metabolism in Plasmodium falciparum malaria parasites". PLOS Pathogens 18, n.º 9 (14 de setembro de 2022): e1010803. http://dx.doi.org/10.1371/journal.ppat.1010803.
Texto completo da fonteLu, Zhifang, Biying Wang, Zhiyu Qiu, Ruiling Zhang, Jimin Zheng e Zongchao Jia. "YdfD, a Lysis Protein of the Qin Prophage, Is a Specific Inhibitor of the IspG-Catalyzed Step in the MEP Pathway of Escherichia coli". International Journal of Molecular Sciences 23, n.º 3 (29 de janeiro de 2022): 1560. http://dx.doi.org/10.3390/ijms23031560.
Texto completo da fonteDong, Miaoyin, Jinjuan Li, Delong Yang, Mengfei Li e Jianhe Wei. "Biosynthesis and Pharmacological Activities of Flavonoids, Triterpene Saponins and Polysaccharides Derived from Astragalus membranaceus". Molecules 28, n.º 13 (27 de junho de 2023): 5018. http://dx.doi.org/10.3390/molecules28135018.
Texto completo da fonteDini, Irene, Roberta Marra, Pierpaolo Cavallo, Angela Pironti, Immacolata Sepe, Jacopo Troisi, Giovanni Scala, Pasquale Lombari e Francesco Vinale. "Trichoderma Strains and Metabolites Selectively Increase the Production of Volatile Organic Compounds (VOCs) in Olive Trees". Metabolites 11, n.º 4 (31 de março de 2021): 213. http://dx.doi.org/10.3390/metabo11040213.
Texto completo da fonteCrispim, Marcell, Ignasi Bofill Verdaguer, Agustín Hernández, Thales Kronenberger, Àngel Fenollar, Lydia Fumiko Yamaguchi, María Pía Alberione et al. "Beyond the MEP Pathway: A novel kinase required for prenol utilization by malaria parasites". PLOS Pathogens 20, n.º 1 (26 de janeiro de 2024): e1011557. http://dx.doi.org/10.1371/journal.ppat.1011557.
Texto completo da fonteGawriljuk, Victor Oliveira, Rick Oerlemans, Robin M. Gierse, Riya Jotwani, Anna K. H. Hirsch e Matthew R. Groves. "Structure of Mycobacterium tuberculosis 1-Deoxy-D-Xylulose 5-Phosphate Synthase in Complex with Butylacetylphosphonate". Crystals 13, n.º 5 (27 de abril de 2023): 737. http://dx.doi.org/10.3390/cryst13050737.
Texto completo da fonteLi, Yuchan, Jun Zhao, Hua Chen, Yanping Mao, Yuping Yang, Liang Feng, Chuanxin Mo, Lin Huang, Dabin Hou e Ma Yu. "Transcriptome Level Reveals the Triterpenoid Saponin Biosynthesis Pathway of Bupleurum falcatum L." Genes 13, n.º 12 (29 de novembro de 2022): 2237. http://dx.doi.org/10.3390/genes13122237.
Texto completo da fonteSripinyowanich, Siriporn, Sahanat Petchsri, Pumipat Tongyoo, Taek-Kyun Lee, Sukchan Lee e Won Kyong Cho. "Comparative Transcriptomic Analysis of Genes in the 20-hydroxyecdysone Biosynthesis in the Fern Microsorum scolopendria Towards Challenges with Foliar Application of Chitosan". International Journal of Molecular Sciences 24, n.º 3 (25 de janeiro de 2023): 2397. http://dx.doi.org/10.3390/ijms24032397.
Texto completo da fonteMahadi, Nursyah Fitri, Azman Abd Samad e Abdul Fatah A. Samad. "Identification of MiR398 and Its Regulatory Roles in Terpenoid Biosynthesis of Persicaria odorata". Malaysian Journal of Fundamental and Applied Sciences 20, n.º 2 (24 de abril de 2024): 401–11. http://dx.doi.org/10.11113/mjfas.v20n2.3248.
Texto completo da fonteGuggisberg, Ann M., Rachel E. Amthor e Audrey R. Odom. "Isoprenoid Biosynthesis in Plasmodium falciparum". Eukaryotic Cell 13, n.º 11 (12 de setembro de 2014): 1348–59. http://dx.doi.org/10.1128/ec.00160-14.
Texto completo da fonteChen, Cathy, Philip Frasse, Dana Hodge, Brianne Roper e Audrey R. Odom John. "HAD2 Regulates Central Carbon Metabolism in Malaria Parasite P. falciparum". Journal of the Pediatric Infectious Diseases Society 12, Supplement_1 (1 de novembro de 2023): S14. http://dx.doi.org/10.1093/jpids/piad070.026.
Texto completo da fonteZhang, Yueya, Haifeng Yan, Yuan Li, Yuping Xiong, Meiyun Niu, Xinhua Zhang, Jaime A. Teixeira da Silva e Guohua Ma. "Molecular Cloning and Functional Analysis of 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase from Santalum album". Genes 12, n.º 5 (22 de abril de 2021): 626. http://dx.doi.org/10.3390/genes12050626.
Texto completo da fontePark, Jooyoung, Ann M. Guggisberg, Audrey R. Odom e Niraj H. Tolia. "Cap-domain closure enables diverse substrate recognition by the C2-type haloacid dehalogenase-like sugar phosphatasePlasmodium falciparumHAD1". Acta Crystallographica Section D Biological Crystallography 71, n.º 9 (25 de agosto de 2015): 1824–34. http://dx.doi.org/10.1107/s1399004715012067.
Texto completo da fonte