Literatura científica selecionada sobre o tema "Metals Fatigue"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Metals Fatigue".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Metals Fatigue"
Correia, J. A. F. O., A. M. P. De Jesus, I. F. Pariente, J. Belzunce e A. Fernández-Canteli. "Mechanical fatigue of metals". Engineering Fracture Mechanics 185 (novembro de 2017): 1. http://dx.doi.org/10.1016/j.engfracmech.2017.10.029.
Texto completo da fontePolák, Jaroslav, Jiří Man e Ivo Kuběna. "The True Shape of Persistent Slip Markings in Fatigued Metals". Key Engineering Materials 592-593 (novembro de 2013): 781–84. http://dx.doi.org/10.4028/www.scientific.net/kem.592-593.781.
Texto completo da fonteEnomoto, Masatoshi. "Prediction of Fatigue Life for Light Metals and their Welded Metals". Materials Science Forum 794-796 (junho de 2014): 273–77. http://dx.doi.org/10.4028/www.scientific.net/msf.794-796.273.
Texto completo da fonteKAWAGOISHI, Norio, Qiang CHEN, Masahiro GOTO, Qingyuan WANG e Hironobu NISITANI. "Ultrasonic Fatigue Properties of Metals". Proceedings of Conference of Kyushu Branch 2003 (2003): 47–48. http://dx.doi.org/10.1299/jsmekyushu.2003.47.
Texto completo da fonteTROSHCHENKO, V. T. "Fatigue fracture toughness of metals". Fatigue & Fracture of Engineering Materials & Structures 32, n.º 4 (abril de 2009): 287–91. http://dx.doi.org/10.1111/j.1460-2695.2009.01343.x.
Texto completo da fonteFonseca de Oliveira Correia, José António, Miguel Muñiz Calvente, Abílio Manuel Pinho de Jesus e Alfonso Fernández-Canteli. "ICMFM18-Mechanical fatigue of metals". International Journal of Structural Integrity 8, n.º 6 (4 de dezembro de 2017): 614–16. http://dx.doi.org/10.1108/ijsi-10-2017-0055.
Texto completo da fontePineau, André, David L. McDowell, Esteban P. Busso e Stephen D. Antolovich. "Failure of metals II: Fatigue". Acta Materialia 107 (abril de 2016): 484–507. http://dx.doi.org/10.1016/j.actamat.2015.05.050.
Texto completo da fonteVinogradov, A., e S. Hashimoto. "Fatigue of Severely Deformed Metals". Advanced Engineering Materials 5, n.º 5 (16 de maio de 2003): 351–58. http://dx.doi.org/10.1002/adem.200310078.
Texto completo da fonteTeng, N. J., e T. H. Lin. "Elastic Anisotropy Effect of Crystals on Polycrystal Fatigue Crack Initiation". Journal of Engineering Materials and Technology 117, n.º 4 (1 de outubro de 1995): 470–77. http://dx.doi.org/10.1115/1.2804741.
Texto completo da fonteLowe, Terry C. "Enhancing Fatigue Properties of Nanostructured Metals and Alloys". Advanced Materials Research 29-30 (novembro de 2007): 117–22. http://dx.doi.org/10.4028/www.scientific.net/amr.29-30.117.
Texto completo da fonteTeses / dissertações sobre o assunto "Metals Fatigue"
Nowicki, Timothy. "Statistical model prediction of fatigue life for diffusion bonded Inconel 600 /". Online version of thesis, 2008. http://hdl.handle.net/1850/7984.
Texto completo da fonteFernandes, Paulo Jorge Luso. "Fatigue and fracture of metals in liquid-metal environments". Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337963.
Texto completo da fonteLunt, William S. "Molecular dynamics simulation of fatigue damage in metals". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Dec%5FLunt.pdf.
Texto completo da fonteErasmus, Daniel Jacobus. "The fatigue life cycle prediction of a light aircraft undercarriage". Thesis, Nelson Mandela Metropolitan University, 2010. http://hdl.handle.net/10948/1527.
Texto completo da fonteWilliams, Zachary. "Krouse Fatigue for Metals with Elevated Mean Stress". Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1597075964521893.
Texto completo da fonteRepetto, Eduardo A. Ortiz Michael. "On the fatigue behavior of ductile F.C.C. metals /". Diss., Pasadena, Calif. : California Institute of Technology, 1998. http://resolver.caltech.edu/CaltechETD:etd-01242008-133649.
Texto completo da fonteZhao, Tianwen. "Fatigue of aluminum alloy 7075-T651 /". abstract and full text PDF (UNR users only), 2009. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3342620.
Texto completo da fonte"December, 2008." Includes bibliographical references (leaves 76-83). Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2009]. 1 microfilm reel ; 35 mm. Online version available on the World Wide Web.
Morrissey, Ryan J. "Frequency and mean stress effects in high cycle fatigue of Ti-6A1-4V". Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/17095.
Texto completo da fonteJin, Ohchang. "The characterization of small fatigue crack growth in PH13-8 Mo stainless steel". Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/19633.
Texto completo da fonteGhodratighalati, Mohamad. "Multiscale Modeling of Fatigue and Fracture in Polycrystalline Metals, 3D Printed Metals, and Bio-inspired Materials". Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/104944.
Texto completo da fonteDoctor of Philosophy
The goal of this research is developing a multiscale framework to study the details of fracture and fatigue for the rolling contact in rails, additively manufactured alloys, and bio-inspired hierarchical materials. Rolling contact fatigue (RCF) is a major source of failure and a dominant cause of maintenance and replacements in many railways around the world. Different computational models are developed for studying rolling contact fatigue in rail materials. The method can predict RCF life and simulate crack initiation sites under various conditions and the results will help better maintenance of the railways and increase the safety of trains. The developed model is employed to study the fracture and fatigue behavior in 3D printed metals created by the selective laser melting (SLM) method. SLM method as a part of metal additive manufacturing (AM) technologies is revolutionizing industries including biomedical, automotive, aerospace, energy, and many others. Since experiments on 3D printed metals are considerably time-consuming and expensive, computational analysis is a proper alternative to reduce cost and time. Our method for studying the fatigue at the microstructural level of 3D printed alloys can help to create more fatigue and fracture resistant materials. In the last section, we have studied fracture behavior in bio-inspired materials. A fundamental problem in engineering is how to find the design that exhibits the best combination of mechanical properties. Biological materials like bone, nacre, and teeth are constructed from simple building blocks and show a surprising combination of high strength and toughness. By inspiring from these materials, we have simulated fracture behavior of a pre-designed composite material consisting of soft and stiff building blocks. The results show a better performance of bio-inspired structure compared to its building blocks. Furthermore, an optimization method is implemented into the designing the bio-inspired structures for the first time, which enables us to perform the bio-inspired material design with the target of finding the most efficient geometries that can resist defects in their structure.
Livros sobre o assunto "Metals Fatigue"
1954-, Hejwowski Tadeusz, ed. Thermal fatigue of metals. New York: M. Dekker, 1991.
Encontre o texto completo da fonteSchijve, Jaap. Biaxial Fatigue of Metals. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23606-3.
Texto completo da fonteBathias, Claude. Fatigue Limit in Metals. Hoboken, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118648704.
Texto completo da fonteCorreia, José A. F. O., Abílio M. P. De Jesus, António Augusto Fernandes e Rui Calçada, eds. Mechanical Fatigue of Metals. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13980-3.
Texto completo da fonteCardona, D. C. Fatigue of brittle metals. Birmingham: University of Birmingham, 1990.
Encontre o texto completo da fonteI, Stephens R., e Fuchs H. O. 1907-, eds. Metal fatigue in engineering. 2a ed. New York: Wiley, 2001.
Encontre o texto completo da fonteDang, Van Ky, e Papadopoulos Iōannēs V, eds. High-cycle metal fatique: From theory to applications. Wien: Springer, 1999.
Encontre o texto completo da fonteJ, Comer Jess, e Handrock James L, eds. Fundamentals of metal fatigue analysis. Englewood Cliffs, N.J: Prentice Hall, 1990.
Encontre o texto completo da fonte1935-, Marsh K. J., e Pook L. P, eds. Metal fatigue. Mineola, NY: Dover Publications, 1999.
Encontre o texto completo da fonteMilella, Pietro Paolo. Fatigue and Corrosion in Metals. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-2336-9.
Texto completo da fonteCapítulos de livros sobre o assunto "Metals Fatigue"
Kaesche, Helmut. "Corrosion Fatigue". In Corrosion of Metals, 525–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-96038-3_16.
Texto completo da fonteCarlson, R. L., G. A. Kardomateas e J. I. Craig. "Fatigue in Metals". In Solid Mechanics and Its Applications, 19–39. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4252-9_3.
Texto completo da fonteMilella, Pietro Paolo. "Fatigue Testing. Fatigue Curve Construction and Fatigue Limit Assessment". In Fatigue and Corrosion in Metals, 431–78. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-51350-3_10.
Texto completo da fonteMilella, Pietro Paolo. "Corrosion Fatigue". In Fatigue and Corrosion in Metals, 767–806. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_16.
Texto completo da fonteMilella, Pietro Paolo. "Multiaxial Fatigue". In Fatigue and Corrosion in Metals, 477–520. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_9.
Texto completo da fonteMilella, Pietro Paolo. "Corrosion Fatigue". In Fatigue and Corrosion in Metals, 885–923. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-51350-3_20.
Texto completo da fonteMilella, Pietro Paolo. "Multiaxial Fatigue". In Fatigue and Corrosion in Metals, 593–636. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-51350-3_13.
Texto completo da fonteBhaduri, Amit. "Fatigue". In Mechanical Properties and Working of Metals and Alloys, 317–71. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7209-3_8.
Texto completo da fonteMilella, Pietro Paolo. "Stress-Based Fatigue Analysis High Cycle Fatigue". In Fatigue and Corrosion in Metals, 245–308. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_5.
Texto completo da fonteMilella, Pietro Paolo. "Strain-Based Fatigue Analysis Low Cycle Fatigue". In Fatigue and Corrosion in Metals, 309–63. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_6.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Metals Fatigue"
Mamiya, Edgar Nobuo, e José Alexander Araújo. "A Criterion to Predict the Fatigue Strength of Hard Metals under Multiaxial Loading". In SAE Brasil International Conference on Fatigue. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-4065.
Texto completo da fonteLuong, Minh Phong. "Infrared thermography of fatigue in metals". In Aerospace Sensing, editado por Jan K. Eklund. SPIE, 1992. http://dx.doi.org/10.1117/12.58539.
Texto completo da fonte"The Development of Fatigue Cracks in Metals". In Experimental Mechanics of Solids. Materials Research Forum LLC, 2019. http://dx.doi.org/10.21741/9781644900215-18.
Texto completo da fonteLuong, Minh Phong. "Fatigue evaluation of metals using infrared thermography". In Second International Conference on Experimental Mechanics, editado por Fook S. Chau e Chenggen Quan. SPIE, 2001. http://dx.doi.org/10.1117/12.429590.
Texto completo da fonteXue, Yibin, Tong Li e Frank Abdi. "Fatigue Damage Initiation Life Prediction for Heterogeneous Metals". In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-1653.
Texto completo da fonteKrapez, J. C., D. Pacou e G. Gardette. "Lock-in thermography and fatigue limit of metals". In 2000 Quantitative InfraRed Thermography. QIRT Council, 2000. http://dx.doi.org/10.21611/qirt.2000.051.
Texto completo da fonteEwenz, L. "Approach to transferring force-based fatigue curves into stress-related fatigue curves for clinch joints". In Sheet Metal 2023. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902417-18.
Texto completo da fonteSan Marchi, Chris, e Brian P. Somerday. "Fatigue Crack Growth of Structural Metals for Hydrogen Service". In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57701.
Texto completo da fonteVshivkov, A., A. Iziumova e O. Plekhov. "Experimental study of thermodynamics propagation fatigue crack in metals". In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4932925.
Texto completo da fonteBoyce, Brad, Christopher Barr, Ta Duong, Daniel Bufford, A. Molkeri, Nathan Heckman, David Adams, A. Srivastava, Khalid Hattar e Michael Demkowicz. "Implications of Fatigue-Crack Healing in Nanocrystalline Metals [Slides]". In TMS 2022 Annual Meeting & Exhibition, Anaheim, CA (United States), 27 Feb- 3 Mar 2022. US DOE, 2023. http://dx.doi.org/10.2172/2002234.
Texto completo da fonteRelatórios de organizações sobre o assunto "Metals Fatigue"
Farkas, Diana. Atomistic Mechanisms of Fatigue in Nanocrystalline Metals. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2004. http://dx.doi.org/10.21236/ada438940.
Texto completo da fonteHertzberg, Richard W. Fatigue and Fracture Mechanics of Structural Metals, Plastics, and Composites. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1986. http://dx.doi.org/10.21236/ada173064.
Texto completo da fonteLewandowski, John J. Microstructural Effects on Fracture and Fatigue of Advanced Refractory Metals and Composites. Fort Belvoir, VA: Defense Technical Information Center, junho de 2001. http://dx.doi.org/10.21236/ada387898.
Texto completo da fonteGuralnick. Hysteresis and Acoustic Emission as Non-Destructive Measures of the Fatigue Process in Metals. Fort Belvoir, VA: Defense Technical Information Center, março de 1995. http://dx.doi.org/10.21236/ada295602.
Texto completo da fonteHackel, L. A., e H.-L. Chen. Laser Peening--Strengthening Metals to Improve Fatigue Lifetime and Retard Stress-Induced Corrosion Cracking in Gears, Bolts and Cutter. Office of Scientific and Technical Information (OSTI), agosto de 2003. http://dx.doi.org/10.2172/15004997.
Texto completo da fonteMaxey. L51427 ERW Weld Zone Characteristics. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), junho de 1992. http://dx.doi.org/10.55274/r0011187.
Texto completo da fonteRiveros, Guillermo, e Hussam Mahmoud. Underwater carbon fiber reinforced polymer (CFRP)–retrofitted steel hydraulic structures (SHS) fatigue cracks. Engineer Research and Development Center (U.S.), março de 2023. http://dx.doi.org/10.21079/11681/46588.
Texto completo da fonteBi, Yunpeng, Xi Li, Huixin Yan, Xiaomei Zhang, Hongyi Guan, Haiyu Zhu, Tingwei Ding e Bailin Song. Acupoint massage for chronic fatigue syndrome:A protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, abril de 2023. http://dx.doi.org/10.37766/inplasy2023.4.0083.
Texto completo da fonteRosenfeld e Kiefner. L52270 Basics of Metal Fatigue in Natural Gas Pipeline Systems - A Primer for Gas Pipeline Operators. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), novembro de 2004. http://dx.doi.org/10.55274/r0010154.
Texto completo da fonteWang, Yanli, Peijun Hou e Sam Sham. Report on FY 2020 creep, fatigue and creep fatigue testing of Alloy 709 base metal at ORNL. Office of Scientific and Technical Information (OSTI), setembro de 2020. http://dx.doi.org/10.2172/1671410.
Texto completo da fonte