Artigos de revistas sobre o tema "Metallic nuclear waste"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Metallic nuclear waste".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Stoulil, J., and D. Dobrev. "Microbial corrosion of metallic materials in a deep nuclear-waste repository." Koroze a ochrana materialu 60, no. 2 (2016): 59–67. http://dx.doi.org/10.1515/kom-2016-0010.
Texto completo da fonteDietz, N. L., and D. D. Keiser. "TEM Analysis of Corrosion Products From a Radioactive Stainless Steel-based Alloy." Microscopy and Microanalysis 6, S2 (2000): 368–69. http://dx.doi.org/10.1017/s1431927600034334.
Texto completo da fonteJanney, D. E., and D. D. Keiser. "Actinides in metallic waste from electrometallurgical treatment of spent nuclear fuel." JOM 55, no. 9 (2003): 59–60. http://dx.doi.org/10.1007/s11837-003-0032-z.
Texto completo da fonteHolt, Erika, Maria Oksa, Matti Nieminen, et al. "Predisposal conditioning, treatment, and performance assessment of radioactive waste streams." EPJ Nuclear Sciences & Technologies 8 (2022): 40. http://dx.doi.org/10.1051/epjn/2022036.
Texto completo da fonteBarton, Daniel N. T., Thomas Johnson, Anne Callow, et al. "A review of contamination of metallic surfaces within aqueous nuclear waste streams." Progress in Nuclear Energy 159 (May 2023): 104637. http://dx.doi.org/10.1016/j.pnucene.2023.104637.
Texto completo da fonteMoiseenko, V., and S. Chernitskiy. "Nuclear Fuel Cycle with Minimized Waste." Nuclear and Radiation Safety, no. 1(81) (March 12, 2019): 30–35. http://dx.doi.org/10.32918/nrs.2019.1(81).05.
Texto completo da fonteJanney, Dawn E. "Host phases for actinides in simulated metallic waste forms." Journal of Nuclear Materials 323, no. 1 (2003): 81–92. http://dx.doi.org/10.1016/j.jnucmat.2003.08.032.
Texto completo da fonteRodríguez, Martín A. "Anticipated Degradation Modes of Metallic Engineered Barriers for High-Level Nuclear Waste Repositories." JOM 66, no. 3 (2014): 503–25. http://dx.doi.org/10.1007/s11837-014-0873-7.
Texto completo da fonteJanney, D. E. "Incorporation of Actinide Elements into Iron-Zirconium Intermetallic Phases in Metallic Waste Forms for High-Level Nuclear Waste." Microscopy and Microanalysis 8, S02 (2002): 1310–11. http://dx.doi.org/10.1017/s1431927602104983.
Texto completo da fontePavliuk, Alexander O., Evgeniy V. Bespala, Sergey G. Kotlyarevskiy, Ivan Yu Novoselov, and Veleriy N. Kotov. "Analysis of Heat Release Processes inside Storage Facilities Containing Irradiated Nuclear Graphite." Science and Technology of Nuclear Installations 2022 (January 30, 2022): 1–13. http://dx.doi.org/10.1155/2022/2957310.
Texto completo da fontePieraccini, Michel, and Sylvain Granger. "A nuclear owner/operator perspective on ways and means for joint programming on predisposal activities." EPJ Nuclear Sciences & Technologies 6 (2020): 20. http://dx.doi.org/10.1051/epjn/2019039.
Texto completo da fonteGaloisy, L., G. Calas, G. Morin, S. Pugnet, and C. Fillet. "Structure of Pd–Te precipitates in a simulated high-level nuclear waste glass." Journal of Materials Research 13, no. 5 (1998): 1124–27. http://dx.doi.org/10.1557/jmr.1998.0158.
Texto completo da fonteRébiscoul, Diane, Emilien Burger, Florence Bruguier, et al. "Glass-Iron-Clay interactions in a radioactive waste geological disposal: a multiscale approach." MRS Proceedings 1518 (2013): 185–90. http://dx.doi.org/10.1557/opl.2013.67.
Texto completo da fonteMednikov, I. V., V. V. Vasilyev, A. S. Busygin, and A. A. Sobko. "Provision of the radiation safety for the decomissioning of the heavy-water research nuclear reactor NRC «Kurchatov Institute» – ITEP." Radiatsionnaya Gygiena = Radiation Hygiene 13, no. 1 (2020): 74–83. http://dx.doi.org/10.21514/1998-426x-2020-13-1-74-83.
Texto completo da fonteLemont, Florent, Patrice Charvin, Aldo Russello, and Karine Poizot. "An Innovative Hybrid Process Involving Plasma in a Cold Crucible Melter Devoted to the Futur Intermediate Level Waste Treatment: The SHIVA Technology." Advances in Science and Technology 73 (October 2010): 148–57. http://dx.doi.org/10.4028/www.scientific.net/ast.73.148.
Texto completo da fonteGossé, S., C. Guéneau, S. Bordier, S. Schuller, A. Laplace, and J. Rogez. "A Thermodynamic Approach to Predict the Metallic and Oxide Phases Precipitations in Nuclear Waste Glass Melts." Procedia Materials Science 7 (2014): 79–86. http://dx.doi.org/10.1016/j.mspro.2014.10.011.
Texto completo da fonteNiederleithinger, Ernst, Vera Lay, Christian Köpp, Erika Holt, and Maria Oksa. "PREDIS: innovative ways for predisposal treatment and monitoring of low and medium radioactive waste." Safety of Nuclear Waste Disposal 1 (November 10, 2021): 9–10. http://dx.doi.org/10.5194/sand-1-9-2021.
Texto completo da fonteGuillaume, D., A. Neaman, M. Cathelineau, et al. "Experimental synthesis of chlorite from smectite at 300ºC in the presence of metallic Fe." Clay Minerals 38, no. 3 (2003): 281–302. http://dx.doi.org/10.1180/0009855033830096.
Texto completo da fonteOrr, Robin, Hugh Godfrey, Chris Broan, et al. "Formation and physical properties of uranium hydride under conditions relevant to metallic fuel and nuclear waste storage." Journal of Nuclear Materials 477 (August 2016): 236–45. http://dx.doi.org/10.1016/j.jnucmat.2016.04.057.
Texto completo da fonteParaskevoulakos, C., C. A. Stitt, K. R. Hallam, et al. "Monitoring the degradation of nuclear waste packages induced by interior metallic corrosion using synchrotron X-ray tomography." Construction and Building Materials 215 (August 2019): 90–103. http://dx.doi.org/10.1016/j.conbuildmat.2019.04.178.
Texto completo da fonteBuck, Edgar C., Alan L. Schemer-Kohrn, and Jonathan B. Wierschke. "Technetium Incorporation into C14 and C15 Laves Intermetallic Phases." MRS Proceedings 1518 (2013): 117–22. http://dx.doi.org/10.1557/opl.2013.69.
Texto completo da fonteTOKUHIRO, Tadashi, Joshua W. CAREY, Rolanda M. REED, and Sita S. AKELLA. "SELECTIVE CAPTURE AND ENCAPSULATION OF METALLIC CATIONS BY HYDROGELS CONSISTING OF COPOLY(N-ISOPROPYLACRYLAMIDE/FUNCTIONAL MONOMER) NETWORKS." SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY 20, no. 20 (2012): 25–41. http://dx.doi.org/10.48141/sbjchem.v20.n20.2012.29_revista_2012a.pdf.
Texto completo da fonteChaudhry, Muhammad Junaid, Sascha Gentes, Alexander Heneka, and Carla Olivia Krauß. "Wet sieving and magnetic separation for the treatment of radioactive secondary waste produced from waterjet abrasive suspension cutting." Safety of Nuclear Waste Disposal 2 (September 6, 2023): 9–10. http://dx.doi.org/10.5194/sand-2-9-2023.
Texto completo da fonteFujita, Reiko, Mitsuaki Yamaoka, Masatoshi Kawashima, Masaki Saito, Haruaki Matsuura, and Hiroshi Akatsuka. "A metallic fuel cycle for Self-Consistent Nuclear Energy System (SCNES)." Progress in Nuclear Energy 40, no. 3-4 (2002): 615–20. http://dx.doi.org/10.1016/s0149-1970(02)00057-4.
Texto completo da fonteGuo, Xiaolei, Penghui Lei, Chandi Mohanty, Tiankai Yao, Jie Lian, and Gerald S. Frankel. "Enhanced Crevice Corrosion of Stainless Steel 316 By Degradation of Cr-Containing Hollandite Crevice Former." ECS Meeting Abstracts MA2022-02, no. 11 (2022): 739. http://dx.doi.org/10.1149/ma2022-0211739mtgabs.
Texto completo da fonteOsacký, Marek, Miroslav Honty, Jana Madejová, Thomas Bakas, and Vladimír Šucha. "Experimental interactions of Slovak bentonites with metallic iron." Geologica Carpathica 60, no. 6 (2009): 535–43. http://dx.doi.org/10.2478/v10096-009-0039-7.
Texto completo da fontePokhitonov, Yu A., V. A. Starchenko, I. Yu Dalyaev, and S. L. Titov. "Using hot isostatic pressing for radioactive waste isolation purposes." Radioactive Waste 16, no. 3 (2021): 20–29. http://dx.doi.org/10.25283/2587-9707-2021-3-20-29.
Texto completo da fonteHaas, Allan, Dale F. Rucker, and Marc T. Levitt. "Investigating the effective resistivity of reinforced concrete waste storage tanks at the Hanford Site." GEOPHYSICS 87, no. 1 (2021): B31—B43. http://dx.doi.org/10.1190/geo2021-0187.1.
Texto completo da fonteKhorasanov, Georgiy, Dmitriy Samokhin, Aleksandr Zevyakin, Yevgeniy Zemskov, and Anatoliy Blokhin. "Lead reactor of small power with metallic fuel." Nuclear Energy and Technology 4, no. 2 (2018): 99–102. http://dx.doi.org/10.3897/nucet.4.30527.
Texto completo da fonteVoronkova, Liubov V. "Recent Advances in Cast Iron Structure and Properties Ultrasonic Testing and Flaw Detection." Materials Science Forum 925 (June 2018): 499–503. http://dx.doi.org/10.4028/www.scientific.net/msf.925.499.
Texto completo da fonteGrigaliūnienė, Dalia, Robertas Poškas, Raimondas Kilda, Hussam Jouhara, and Povilas Poškas. "Modeling radionuclide migration from activated metallic waste disposal in a generic geological repository in Lithuania." Nuclear Engineering and Design 370 (December 2020): 110885. http://dx.doi.org/10.1016/j.nucengdes.2020.110885.
Texto completo da fonteSiddiqui, N. A., M. A. Iqbal, H. Abbas, and D. K. Paul. "Reliability analysis of nuclear containment without metallic liners against jet aircraft crash." Nuclear Engineering and Design 224, no. 1 (2003): 11–21. http://dx.doi.org/10.1016/s0029-5493(03)00080-3.
Texto completo da fonteGebauer, Jana, Florian Gruber, Wilhelm Holfeld, Wulf Grählert, and Andrés Fabián Lasagni. "Prediction of the Quality of Thermally Sprayed Copper Coatings on Laser-Structured CFRP Surfaces Using Hyperspectral Imaging." Photonics 9, no. 7 (2022): 439. http://dx.doi.org/10.3390/photonics9070439.
Texto completo da fonteRucker, Dale F., Meng H. Loke, Marc T. Levitt, and Gillian E. Noonan. "Electrical-resistivity characterization of an industrial site using long electrodes." GEOPHYSICS 75, no. 4 (2010): WA95—WA104. http://dx.doi.org/10.1190/1.3464806.
Texto completo da fonteParsons, Sam, Thomas Haines, Matthew White, et al. "Features, events and processes (FEP) analysis of the interactions between repository monitoring systems and multi-barrier systems." Safety of Nuclear Waste Disposal 2 (September 6, 2023): 177–78. http://dx.doi.org/10.5194/sand-2-177-2023.
Texto completo da fonteLaw, Kathleen A., Stephen Parry, Nicholas D. Bryan, et al. "Plutonium Migration during the Leaching of Cemented Radioactive Waste Sludges." Geosciences 9, no. 1 (2019): 31. http://dx.doi.org/10.3390/geosciences9010031.
Texto completo da fonteParaskevoulakos, C., K. R. Hallam, and T. B. Scott. "Grout durability within miniaturised Intermediate Level Waste drums at early stages of interior volume expansion induced by encapsulated metallic corrosion." Journal of Nuclear Materials 510 (November 2018): 348–59. http://dx.doi.org/10.1016/j.jnucmat.2018.08.028.
Texto completo da fonteGalliez, Kévin, Guillaume Jossens, Alain Godot, and Christophe Mathonat. "Characterization of Low Level Wastes: a new design for calorimetric measurement." EPJ Web of Conferences 170 (2018): 07003. http://dx.doi.org/10.1051/epjconf/201817007003.
Texto completo da fonteKuzina, Yu, D. Klinov, G. Mikhailov, A. Sorokin, and V. Alekseev. "COMPLEX OF EXPERIMENTAL FACILITIES FOR DESIGN AND SAFETY JUSTIFICATION OF FAST REACTORS WITH LIQUID METAL COOLANTS." PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS 2021, no. 4 (2021): 172–94. http://dx.doi.org/10.55176/2414-1038-2021-4-172-194.
Texto completo da fonteOkunev, Viacheslav. "The concept of a fast reactor with liquid metal fuel in tungsten capsules." E3S Web of Conferences 411 (2023): 01013. http://dx.doi.org/10.1051/e3sconf/202341101013.
Texto completo da fonteBen-Dor, G., A. Dubinsky, and T. Elperin. "Optimization of multi-layered metallic shield." Nuclear Engineering and Design 241, no. 6 (2011): 2020–25. http://dx.doi.org/10.1016/j.nucengdes.2011.01.046.
Texto completo da fontePasquato, Leone, Christoph Strangfeld, Esko Strömmer, et al. "Embedded sensors system to monitor cemented waste drums." Safety of Nuclear Waste Disposal 2 (September 6, 2023): 21. http://dx.doi.org/10.5194/sand-2-21-2023.
Texto completo da fonteBieniussa, K. W. "German codes and standards concerning metallic nuclear power plant components — Present state and trends expected." Nuclear Engineering and Design 98, no. 3 (1987): 279–81. http://dx.doi.org/10.1016/0029-5493(87)90004-5.
Texto completo da fonteTachibana, Yukio, and Tatsuo Iyoku. "Structural design of high temperature metallic components." Nuclear Engineering and Design 233, no. 1-3 (2004): 261–72. http://dx.doi.org/10.1016/j.nucengdes.2004.08.013.
Texto completo da fonteSulatsky, Andrey A., Viacheslav I. Almjashev, Vladimir S. Granovsky, et al. "Experimental study of oxidic-metallic melt oxidation." Nuclear Engineering and Design 363 (July 2020): 110618. http://dx.doi.org/10.1016/j.nucengdes.2020.110618.
Texto completo da fonteRothfuss, Helmut, Dieter Stausebach, and Manfred Ullrich. "Metallic core internals of the modular HTR." Nuclear Engineering and Design 147, no. 1 (1994): 93–100. http://dx.doi.org/10.1016/0029-5493(94)90260-7.
Texto completo da fonteXie, Yi, Jinsuo Zhang, Xiang Li, et al. "Lanthanide migration and immobilization in metallic fuels." Progress in Nuclear Energy 109 (November 2018): 233–38. http://dx.doi.org/10.1016/j.pnucene.2018.08.019.
Texto completo da fonteEbert, Elena L., Andrey Bukaemskiy, Fabian Sadowski, Steve Lange, Andreas Wilden, and Giuseppe Modolo. "Reprocessability of molybdenum and magnesia based inert matrix fuels." Nukleonika 60, no. 4 (2015): 871–78. http://dx.doi.org/10.1515/nuka-2015-0124.
Texto completo da fonte., Manisha, Anima Sunil Dadhich, and Anik Sen. "Preparation of barium ferrate from mill scale and degradation study of aqueous Eriochrome black – T." Research Journal of Chemistry and Environment 27, no. 2 (2023): 10–19. http://dx.doi.org/10.25303/2702rjce10019.
Texto completo da fonteYacout, Abdellatif M., Kun Mo, Aaron Oaks, Yinbin Miao, Tanju Sofu, and Walid Mohamed. "FIPD: The SFR metallic fuels irradiation & physics database." Nuclear Engineering and Design 380 (August 2021): 111225. http://dx.doi.org/10.1016/j.nucengdes.2021.111225.
Texto completo da fonte